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Chapter 1: Introduction

Orbifolds are an important modern mathematical concept. An orbifold is a generaliza-
tion of a manifold. In simpler terms, an orbifold is a topological space that is locally
modeled by a finite group quotient of Euclidean space. The concept of orbifolds was
originally proposed by the mathematician William Thurston in the 1970s [67].

Orbifolds are crucial in many dimensions. They have been used to examine the
geometric properties of hyperbolic spaces in mathematics. In 2003, they were used to
prove the famous Poincaré conjecture for three dimensions, which was considered to be
the most difficult one [57]. They have been used in theoretical physics to describe spatial
symmetries for string theory [35], and to model the universe in cosmology [79]. In order
to explore the symmetrical properties of crystal structures, structural crystallography
has also utilized the orbifold concept [38]. Orbifolds are also widely used in tensor
field topology [61], texture synthesis [53, 82], injective parameterizations of surface
meshes [7, 9, 6], and music [68].

1.1 Recent Developments

Understanding orbifolds is challenging because of the following factors:

1. Abstract concept. Orbifold is an abstract mathematical concept combining ideas
from topology, abstract algebra, geometry, and group theory. Learning the concept
requires a solid foundation in those areas.

2. Complex definition. Orbifolds are defined by intricate mathematical language and
notation, which involves Hausdorff spaces, groups and group actions, covering,
charts, and homeomorphism.

3. Difficulty in visualization. The abstract concepts are difficult to relate to intuition,
particularly in non-Euclidean space, where the geometric structure of the majority
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of orbifolds is found.

The dissertation concentrates on two-dimensional orbifolds generated through reflec-
tions in the Euclidean plane, spherical space, and hyperbolic space.

Current representations of two-dimensional orbifolds frequently use 2D textures that
tile the underlying space seamlessly [16]. The user needs to identify corresponding
orbits for points or patterns from the universal cover of the orbifold depicted by the
texture. The human cognitive system must infer the transformations between locations
within the same orbit. A Euclidean orbifold, as seen in Figure 1.1 (b), is represented
by the orbifold notation ∗632. In order to determine the orbifold, the user must first
identify the points that are placed in the same orbit. Corner points can be identified by
examining the relationships between nearby points in separate orbits. The identification
of the transformation becomes possible by counting the type and order of symmetry.
Besides Euclidean space, it’s important to note that a two-dimensional orbifold can exist
in spherical or hyperbolic space, as illustrated in Figure 1.1(a) and Figure 1.1(c). These
spaces offer crucial details about space curvatures, the parallel postulate, angle-area
relationships, and geodesics.

(a) (b) (c)

Figure 1.1: The spherical orbifold ∗532 (a), the Euclidean orbifold ∗632 (b) and the
hyperbolic orbifold ∗533 (c) represented by 2D textures. The texture in (a) and (c) is
made by using a partial pattern of the texture in (b).

Based on the aforementioned analysis, visualizing an orbifold from a 2D texture re-
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quires considering multiple factors. These include the position of viewer, the associated
points of the orbits, the transformations between those points, and the method employed
to project the orbits onto the view plane.

Using 2D textures is a valuable method for visualizing orbifolds and illustrating their
universal cover. However, certain crucial properties of orbifolds cannot be adequately
visualized using this method:

• 2D textures require additional interactions or annotations to emphasize different
aspects of an orbifold: the local symmetries, the cone points, the exact location
and orientation of reflective edges, the orbifold itself, and the covering spaces.

• Understanding non-orbifolds is important. Orbifolds and non-orbifolds cannot be
intuitively correlated by 2D textures. We are the first to visualize examples of
non-orbifolds.

• Orbifolds extend beyond 2D textures; 3D objects can utilize orbifolds by extrud-
ing a two-dimensional orbifold into three dimensions. The mirror maze is an
iconic real-life example. In contrast to 2D textures, 3D objects allow users to
explore the visualization more naturally and from multiple perspectives, enhanc-
ing entertainment, information, and intuitiveness. Additionally, 3D objects with
orbifolds can be valuable for physical prototyping and modeling.

1.2 Research Problems

While there are only a handful of Euclidean orbifolds, there are infinitely many spher-
ical and hyperbolic orbifolds. In fact, any polygon whose corner angles can each be
expressed as π

k (k ∈ N+) is an orbifold. To the best of our knowledge, there is no algo-
rithm published that allows the realization of arbitrary such polygons when their natural
spaces are hyperbolic. Most available tools focus on regular polygons. For arbitrary
polygons that represent an orbifold, the lengths of the edges are challenging to deter-
mine.

Current educational practices and research indicate an increasing trend in integrating
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3D graphics and animations to enrich the learning and visualization experience. [54, 19,
65, 78, 43]. Orbifold visualization with 3D techniques presents several challenges due
to the complexities of orbifolds and non-Euclidean geometries. Orbifolds, derived from
non-Euclidean spaces, are characterized by curved surfaces and a distinct set of geomet-
ric rules compared to Euclidean geometry. Visualization with 3D techniques can offer
intuitive insights, and challenges arise when attempting to adapt existing rendering algo-
rithms to conform to the rules of non-Euclidean geometry from a geometric perspective.
In non-Euclidean spaces, light rays do not follow straight lines, but rather geodesics,
which are the shortest paths between two points. 3D techniques must be adapted to
account for these geodesic light paths to create accurate visualizations.

This dissertation aims to address the following research problems:

• While spherical and Euclidean orbifolds have been fully enumerated, there is cur-
rently no explicit enumeration available for hyperbolic orbifolds, to the best of our
knowledge. The objective of this dissertation is to present a detailed enumeration,
including the Euler characteristic, and to deliver this enumeration to users through
an interactive user interface.

• This dissertation aims to utilize a 3D interactive technique for designing and vi-
sualizing arbitrary two-dimensional kaleidoscopic orbifolds. Specifically, the re-
search focuses on addressing the challenges of creating arbitrary orbifolds, con-
struction of rooms for orbifolds, interacting with them, and using real-time pro-
jection based on non-Euclidean geometry for non-Euclidean orbifolds.

• The reflectional symmetries in a kaleidoscope correspond to the behaviors of a
particular Euclidean orbifold. Kaleidoscopes or mirror mazes provide an en-
gaging and intuitive approach for visualizing Euclidean orbifolds through mirror
metaphor. This dissertation aims to extend the mirror metaphor to non-Euclidean
orbifolds and develop a coherent intuition for photo-realistic rendering of mirror
scenes, including addressing challenges such as tracing curved rays, intersecting
with meshes, speeding up the tracing process.
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• The importance of hierarchical structures in non-Euclidean spaces is on par with
those in Euclidean space. This dissertation is dedicated to investigating structures
that specifically recognize and leverage the geometric features in non-Euclidean
spaces.

1.3 Significance of Research Problems

This dissertation has a wide impact on mathematical education and computer graphics:

• Coupling explicit enumeration with a user interface for all two-dimensional kalei-
doscopic orbifolds, based on the combination of polygon cardinality and the uni-
versal cover, will enhance the understanding and accessibility of the connections
among Euler characteristics, underlying spaces, and kaleidoscopic orbifolds.

• The unrestricted creation of two-dimensional kaleidoscopic orbifolds in our in-
teractive design system offers more fundamental units of surface parameteriza-
tion [9], mesh processing, and texture synthesis [53, 82] in computer graphics.
By interacting with orbifolds, users of our interactive design system can learn
about them and gain a deeper understanding of mathematical concepts related to
Non-Euclidean space and orbifolds.

• The visualization with mirror metaphor enables the exploration of complex kalei-
doscopic orbifolds without the requirement of extra duplication of symmetries.
Photo-realistic rendering of orbifolds not only provides a coherent intuitive per-
ception of Euclidean orbifolds and non-Euclidean orbifolds but also allows for
more attractive creation based on the design of the material of objects. Users
of this immersive visualization can learn more about the orbifolds as well as the
underlying space. As shown in Figure 1.2, our system produces orbifolds (config-
uration of the ceiling and the floor) and the symmetry that each orbifold induces.
In addition, through the bending of the mirror frames and the unfamiliar deforma-
tions of Buddha in (a) and (c), the notions of spherical geometry and hyperbolic
geometry are visually delivered, respectively.
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• The proposed hierarchical structures, to organize triangles, complement the geo-
metric characteristics of the underlying space. They can be applied to applications
with the similar requirements.

In addition, there is increased workload deploying non-Euclidean spaces or mathemat-
ical concepts for gaming in the computer graphics community [13, 65, 43]. Our inter-
active design system and rendering algorithms for orbifolds can create immersive and
visually stunning environments for video games and virtual reality applications.

(a) (b) (c)

Figure 1.2: Mirror-metaphor visualization of orbifolds: the spherical orbifold ∗222 (a),
the Euclidean orbifold ∗333 (b), and the hyperbolic orbifold ∗444 (c).

This dissertation is organized as follows to address the research problems: Chapter 2
provides a detailed overview of existing work on the visualization of orbifolds. Subse-
quently, we introduce the models used in this dissertation and the fundamental concepts
of orbifolds in Chapter 3. Following that, we propose an enumeration of orbifolds based
on their cardinality and universal cover (Chapter 4).

Our user interface, which enhances the understanding of orbifolds, is built upon the
enumeration described in Chapter 5. We then introduce the algorithms for constructing
polygons for arbitrary kaleidoscopic orbifolds and the algorithm enabling interactive
creation of the universal cover using shaders in Chapter 6. For interacting with objects
within the orbifold, we introduce the algorithm for embedding the orbifold into space
and translating within the space (Chapter 7). After gaining the ability to interactively de-
sign orbifolds, we present a curved ray tracing algorithm designed to visualize orbifolds
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with mirror rooms in Chapter 8. We also introduce hierarchical structures designed to
enhance rendering speed and complement the features of the underlying space. Lastly,
the dissertation concludes by summarizing its contributions and outlining future direc-
tions in Chapter 9.



8

Chapter 2: Related Work

In this chapter, we review the most relevant research in the field of mathematical visu-
alization, visualization of orbifolds, visualization of non-Euclidean spaces, and related
software, focusing on the primary techniques and their limitations.

2.1 Mathematical Visualization

This dissertation is inspired by the contemporary advancements in the field of mathe-
matical visualization, such as quaternions [31], knots and links [69], 3D printing for
mathematical visualization [63, 45], and branched covering spaces [62]. Our research
strives to advance this area of study and promote interest and engagement in mathemat-
ical visualization within computer science communities. Specifically, our focus is on
orbifolds generated by reflections, incorporating both translational and rotational sym-
metry. With potential applications in various domains, such as computer graphics and
materials science, this research fills a crucial gap in our comprehension of orbifolds and
their intuitive aspects. By exploring a broader range of symmetries and providing new
insights into their visualization and processing, this research contributes to the ongoing
efforts in visualizing orbifolds.

2.2 Visualization of Two-dimensional Orbifolds

M.C. Escher’s four ”Circle Limit” woodcuts depict hyperbolic orbifolds [24]. This 2D
texture provides a natural visualization of orbifolds. Conway et al. [16] employed art-
work with symmetrical textures to illustrate concepts related to orbifolds. However, as
mentioned earlier, this artwork primarily emphasizes the universal cover of an orbifold
rather than the orbifold itself.

There are essentially two challenges in creating the universal covers of an orbifold:
generating the fundamental domain and then producing the universal cover based on the



9

fundamental domain and the related group for orbifolds. Dunham [23, 21, 22] employs
a matrix-based hyperbolic pattern generation method by transforming the fundamental
domain in the Poincaré disk model. Addressing image resolution limitations, a more ef-
fective approach using reverse pixel lookup and GPU solutions is proposed [74, 75]. Be-
yond pattern generation, creative possibilities include bending hyperbolic patterns [14],
establishing hyperbolic symmetry [75], or creating spherical symmetry [48] from the
wallpaper pattern. Zeller et al. [83] provided a database and program for exploring
two-dimensional periodic tilings in E2, S2, and H2. However, their approaches have
limitations in creating arbitrary kaleidoscopic orbifolds.

Beyond creating repeated patterns, two-dimensional orbifolds play a role in the Tutte
embedding of 3D meshes [8, 9, 5].

To deal with this challenge, we initially propose algorithms for creating polygons
for arbitrary orbifolds. We suggest an alternative visual metaphor, likening an orbifold
to a mirrored scene. This metaphor allows observers to recognize whether a scene is an
orbifold and identify its type based on real-life experiences with mirrors. Additionally,
we introduce a system capable of generating a room that corresponds to any given two-
dimensional kaleidoscopic orbifold, even if its universal cover is a non-Euclidean space.

We utilize the mirror metaphor to enhance our understanding of orbifolds, providing
a complementary approach to texture-based orbifold visualization. The mirror metaphor
transforms a two-dimensional orbifold into a three-dimensional room, alternatively con-
ceptualized as a three-dimensional orbifold by combining a two-dimensional orbifold
(floor and ceiling) with a line segment (room height). In the computer graphics com-
munity, physically based rendering aims to replicate real-world scenes on a computer,
producing realistic results for an immersive perception. The simulation of light propa-
gation and the interaction of lights with objects is a specific focus within photo-realistic
rendering [54]. Our mirror-based orbifold visualization aims to depict non-Euclidean
orbifolds using curved ray tracing in non-Euclidean spaces, representing a significant
advancement in the visualization and understanding of orbifolds.
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2.3 Visualization of Non-Euclidean Spaces

There has been recent research on rendering three-manifolds. Our idea is inspired by this
work, and the distinctions will be outlined in this chapter. An n-manifold is a topological
space that locally resembles n-dimensional Euclidean space. Thurston’s geometrization
conjecture identifies eight Thurston geometries in three-manifolds: E3, S3, H3, S2 ×E,
H2 × E, Nil, S̃L(2,R), and Sol. Thurston discussed approaches to visualize three-
manifolds with computer aid, influencing the visualization of three-manifolds [66, 56,
19]. There has been some past research on visualizing three-dimensional orbifolds [28,
12, 55], with a focus on the three-dimensional sphere S3 and three-dimensional hyper-
bolic space H3. In these spaces, the geodesics are either a circular arc or a hyperbola.
Notably, the geodesics in our product spaces are spirals, distinguishing them from those
in S3 and H3 and requiring a different approach to the ray-triangle intersection. Ad-
ditionally, previous research has mainly focused on popular orbifolds in S3 and H3,
such as the Poincaré sphere and the mirror dodecahedron. Our research aims to expand
the scope by providing a method for visualizing any arbitrary two-dimensional kaleido-
scopic orbifold, using the example of a room with mirrors.

A game-like approach is more successful and enjoyable for presenting isotropic
non-Euclidean spaces. Due to the unintuitive perception of non-Euclidean spaces, 3D
gaming engines that have adapted to the rules of non-Euclidean spaces must handle
object conversion, transformation, lighting, and physical simulation [64, 50]. For in-
teractive exploration, a real-time rendering pipeline for non-Euclidean spaces was em-
ployed. Weeks [77, 80, 46] projected objects onto the tangent space and then applied
the rendering pipeline for matrix transformation as E3. The projection by the expo-
nential map is applicable for isotropic geometries (S3 and H3) and product geometries
(S2 ×E and H2 ×E). Additionally, virtual reality and virtual environmental equipment
have been utilized to explore the space of S3, H3, and H2 ×E, providing an immersive
visualization experience [33, 32, 72, 78, 27]. The approaches presented are designed
for three-manifolds; however, when these approaches are applied to spheres and hyper-
boloids, which are two-manifolds, an additional distortion is introduced along the third
dimension. In this dissertation, we employ the spiral-triangle intersection to project
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each vertex on an object in the scene or a virtual duplicate onto the image plane. In this
scenario, real-time rendering with an interactive frame rate is achievable.

2.4 Related Software

Several existing software programs are available for visualizing orbifolds or employ-
ing non-Euclidean space rendering in gaming, offering opportunities for learning about
orbifolds and the corresponding spaces. For instance, KaleidoTile, akin to Conway’s
approach, can showcase all triangular two-dimensional kaleidoscopic orbifolds as 2D
textures, allowing users to interact with the orbifold by changing the texture and trans-
lating symmetries [4]. Zeller et al. also developed a precomputed database and software
for exploring two-dimensional periodic tilings via Delaney-Dress symbols, not limited
to triangular orbifolds [83]. However, their approach is constrained by the polygon
with an incircle for the creation of a fundamental domain, rendering it incapable of
producing all kaleidoscopic orbifolds. Both of these tools generate universal cover by
duplicating the fundamental domain. In contrast, this dissertation can generate arbitrary
two-dimensional kaleidoscopic orbifolds in real-time for 3D visualization, including
the texture-based approach. Moreover, our system facilitates the interactive creation of
orbifolds via Möbius transformation and the generation of universal covers by mirrors
without the need for extra duplication.

Another category of software focuses on gaming and utilizes the visualization of
non-Euclidean spaces with the universal cover of orbifolds for designing games, cre-
ating an interactive and engaging environment beneficial for learning non-Euclidean
spaces. One such game is HyperRogue, a puzzle roguelike that unfolds in the Poincaré
disk, employing orbifolds to craft the map’s tiling [2]. Another game, Hyperbolica, en-
ables users to navigate inside underlying space with polished graphics, also generated
via universal covers [1]. Both games employ Weeks’ approaches for visualizing H3 and
S3 [77, 80], founded on two-dimensional geometries (sphere or Poincaré disk). Simi-
larly, this dissertation facilitates interaction within non-Euclidean spaces, allowing any
two-dimensional kaleidoscopic orbifold to create the universal cover. Additionally, the
projections are based on two-dimensional spaces to avoid additional distortion.
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Chapter 3: Background of Non-Euclidean Orbifolds

In this chapter, we introduce the basic background of non-Euclidean spaces (Chap-
ter 3.1) and the background of kaleidoscopic orbifolds (Chapter 3.2).

3.1 Non-Euclidean Spaces Based on Stereographic Projections

We first introduce the fundamental spherical and hyperbolic models. By working on the
planar models, where we perform stereographic projections on the original models, we
can use the advantages of using the same framework to construct polygons, mesh mirror
rooms, and trace curved rays. The only difference is to identify the geodesics. For
spherical space, the geodesic is identified by antipodal points; however, for hyperbolic
space, the geodesic is identified by symmetric points.

The stereographic projection [34] maps the unit sphere ( Figure 3.1) to the plane
z= 0 such that the equator (a unit circle) is mapped to itself and the north pole is mapped
to the origin in the plane. In this case, the northern hemisphere is mapped to the inside
of the unit disk bounded by the equator while the southern hemisphere is mapped to the
outside of the unit disk. This plane can be identified as the complex plane, i.e. the set of
complex numbers. The south pole is mapped to ∞. The geodesics are mapped to circles
in the plane that intersect the unit circle at a pair of antipodal points (Figure 3.3 (left)).

The hyperbolic plane can be modeled as the upper sheet of the double-sheet hy-
perboloid z2 − x2 − y2 = 1 (Figure 3.2). Like the Euclidean orbifolds, both spherical
orbifolds and hyperbolic orbifolds are polygons whose edges follow the geodesics in
their universal cover. The geodesics in the unit sphere are the great circles, and the
geodesic passing through two mutually distinct points p and q in the hyperbolic space
is the intersection of the plane containing p, q and the vertex of the lower-sheet of the
hyperboloid (Figure 3.2: the curve passing through p and q).

For a non-Euclidean orbifold, its universal cover is either the sphere or the hyper-
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p

q

Figure 3.1: The spherical space can be modeled as the surface of a unit sphere. The
geodesic passing through points p and q in the space is the intersection of the plane
passing through the center of the unit sphere with the sphere’s surface.

bolic space. Constructing a 3D room over the sphere and the hyperboloid would require
a second sphere or hyperboloid to hold the ceiling. While it is possible to construct
the room this way, we instead choose to express the orbifold using a planar model, i.e.
the stereographic projection for the sphere [34] and the Poincaré disk [20] for the hyper-
bolic space. By using these models, we have a unified framework in which any polygon,
regardless of the type of its universal cover, can be constructed in the plane.
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p q

Figure 3.2: The hyperbolic space can be modeled as the upper-sheet of a double-sheet
hyperboloid. The geodesic passing through p and q in the space is the intersection of
the hyperboloid with the plane that passes through p and q as well as the vertex of the
lower sheet.

p

q

p

q

Figure 3.3: Under the stereographic projection, a geodesic in the sphere is mapped
to a circle that intersects the boundary of the unit disk at a pair of antipodal points
(left). Using the Poincaré disk model, a geodesic in the hyperbolic space is mapped to a
circular arc that interests the boundary of the disk at the right angle (right).
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3.2 Background of Kaleidoscopic Orbifolds

In this chapter, we review necessary mathematical background on orbifolds used in this
paper which include the concepts of groups and group actions [36], orbifolds [51, 18],
and non-Euclidean spaces [20]. For a rigorous definition of these concepts, we refer our
readers to the aforementioned references.

Figure 3.4: An orbifold (right: the first quadrant in the real plane) and its universal cover
(left: all four quadrants) are related by a covering map τ(x,y) = (|x|, |y|). The neigh-
borhood of the origin in the orbifold (right) is a quarter disk. The map τ introduces a
symmetry group consisting a horizontal reflection (the letter p to q), a vertical reflection
(the letter p to b), and a rotation by π (the letter p to d). The symmetry group is the
Dihedral group D2.

An orbifold O is a topological space X paired with a discrete symmetry group G

such that X locally resembles a Euclidean disk under the action of G. To better illustrate
this, consider the space L = {(x,y)|x,y ≥ 0} (Figure 3.4 (right)). For each point in
the first quadrant, we can find a small enough disk-shaped neighborhood. However,
for a point on the positive Y -axis, there is a neighborhood of the shape of a half-disk
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which corresponds to a full disk in the Euclidean plane (Figure 3.4 (left)) under the
reflection across the Y -axis. In other words, the union of the half disk in the first quadrant
and its mirror reflection form a full disk. Finally, the origin has a quarter-disk-shaped
neighborhood (Figure 3.4 (right)) which corresponds to a full disk in the Euclidean
plane (Figure 3.4 (left)) when being combined with its reflection across the X-axis (in
the fourth quadrant), the reflection across the Y -axis (in the second quadrant), and the
rotation by π around the origin (in the third quadrant). Thus, L is an orbifold.

Globally, we can see that L is the range of the following function τ(x,y) = (|x|, |y|),
which introduces a map from R2 to L with the symmetry illustrated as follows. The
letter p (Figure 3.4 (right)) corresponds to the letter q in the second quadrant (Figure 3.4
(left)) through the reflection across the Y -axis and the letter b in the fourth quadrant
through the reflection across the X-axis. In addition, it corresponds to the letter d in the
third quadrant through a rotation of π around the origin, which is a composition of the
two aforementioned reflections. Thus, the symmetry induced by the map τ leads to a
symmetry group of four elements: the identity, two reflections, and one rotation. The
group is the Dihedral group of order 2, i.e. D2, which, when acted on R2, leads to the
orbifold L. It has a corner point at the origin and two mirror lines (the positive X-axis
and the positive Y -axis).

In general, a two-dimensional kaleidoscopic orbifold O is a polygon with a sym-
metry group induced by reflections across all of its edges. Without causing ambiguity,
we also refer to the polygon as O. Each edge of the polygon is thus a mirror line, and
every vertex of the polygon is a corner point corresponding to the symmetry of Dk, the
dihedral group of order k. Note that Dk consists of k rotations (including the identity)
and k reflections. In Figure 3.5 we show four such orbifolds, whose polygons have a
configurations of a square (a), a 60◦−60◦−60◦ triangle (b), a 90◦−45◦−45◦ triangle
(c), and a 90◦−60◦−30◦ triangle (d). These orbifolds are given the orbifold notations

(a) ∗2222, (b) ∗333, (c) ∗244, and (d) ∗236, respectively. A generic kaleidoscopic orb-
ifold corresponding to an N-gon O is given the notation ∗k1...kN where the ∗ indicates
the existence of the mirror and ki implies that the angle of the polygon at the i-th corner
is π

ki
.



17

(a) ∗2222 (b)∗333

(c) ∗244 (d) ∗236
Figure 3.5: The four Euclidean orbifolds: (a) ∗2222, (b) ∗333, (c) ∗244, and (d) ∗236.

An orbifold (the polygon) and all of its virtual copies through its symmetry group
can seamlessly tile a space, which is its universal cover. The aforementioned orbifolds
are kaleidoscopic orbifolds whose universal cover is the Euclidean plane, thus Euclidean

orbifolds. Each Euclidean orbifold has a translational cover, which, along with its trans-
lational copies, form the universal cover. The translational cover of ∗2222 consists of the
orbifold, two of its reflections, and one rotation by π (Figure 3.5 (a): any 2×2 subgrid
with the letters q, p, d, and b). The translations needed to generate the universal cover
is the Gaussian integer grid Z[i] [26]. The translational covers of the other Euclidean
orbifolds respectively consist of six copies arranged in a hexagon (Figure 3.5 (b): ∗333),
eight copies arranged in an octagon (Figure 3.5(c): ∗244), and twelve copies arranged
in a dodecagon (Figure 3.5(d): ∗236). The set of translations for ∗244 is also Z[i]. On
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the other hand, the set of translations for ∗333 and ∗236 is the Eisenstein integer grid
Z[ω] [26] where ω = −1+

√
3i

2 .
While it may seem that these are the only kaleidoscopic orbifolds and that all kalei-

doscopic orbifolds must be triangular or rectangular, there are many more. In fact, given
an arbitrary polygon with at least three sides and whose corner angles divide π indi-
vidually, there is an orbifold that corresponds to the polygon. Figure 8.7 shows a room
with three, four, and five mirrors, respectively. However, these orbifolds cannot tile the
Euclidean plane as their universal covers are either the unit sphere (spherical orbifolds)
or the hyperbolic plane (hyperbolic orbifolds). In fact, given an orbifold O =∗k1...kN

where N is the number of walls and ki > 1 (1 ≤ i ≤ N), its universal cover is decided by
the Euler characteristic of the orbifold as follows:

χ(O) =
N

∑
i=1

1
2ki

− N
2
+1. (3.1)

An orbifold O is spherical, Euclidean, or hyperbolic when χ(O)> 0, χ(O) = 0, χ(O)<

0, respectively.
In the next chapter, we describe our orbifold design system starting with an enumer-

ation of all two-dimensional kaleidoscopic orbifolds.
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Chapter 4: Enumeration of Orbifolds

While there has been a complete enumeration of spherical and Euclidean orbifolds, to
our best knowledge such an enumeration is not explicitly given for hyperbolic orbifolds.
In addition, the enumeration for spherical and Euclidean orbifolds is in the form of
an exhaustive list. Our orbifold design system is based on the number of walls (the
cardinality of the underlying polygon) in the orbifold. Thus, we strive for an explicit

enumeration for all two-dimensional kaleidoscopic orbifolds based on the combination
of the polygon cardinality and the universal cover.

There are three types of spherical orbifolds:

1. one mirror;

2. two mirrors;

3. three mirrors.

The only one mirror spherical orbifold is ∗, which corresponds to a room that is half of
the sphere with its boundary being the mirror. There are no corners. In this case, one
can consider the room as a monogon. In the second case, the room has two mirrors that
intersect at π

k at both ends where k > 1. These are diangular orbifolds ∗kk, which are
the section of the unit sphere that are between two longitudes that are π

k apart. Note that
∗11 is the same as ∗ since the corner angles are π . In fact, every corner with an angle π

can be removed from the list of corners. Thus, in the orbifold notation, we require every
number to be at least 2 when there are at least two walls.

For the triangular spherical orbifolds, i.e., three mirrors, there are two sub-types.
The first sub-type has the form ∗22k where k > 1. Figure 8.7 (a) shows one such orb-
ifold (∗222). This type of orbifolds can be obtained by taking half of the orbifold ∗kk in
the northern hemisphere and adding a mirror on the equator. The second sub-type has
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the form ∗23k where k = 3,4,5. Notice that when k = 6 we have ∗236, a Euclidean orb-
ifold. From the discussion, we can see there are more spherical orbifolds than Euclidean
orbifolds.

There are bad orbifolds, namely, ∗k where k > 1 and ∗k1k2 where k2 > k1 > 1. Note
that neither type of the bad orbifolds can be realized because it is not physically possible
to have one great circle intersecting itself at an angle not equal to π , nor is it possible to
have two different great circles that intersect at different angles where they meet. In our
system, we do not construct bad orbifolds.

N Spherical Euclidean Hyperbolic

1 ∗
2 ∗22, ∗33, ∗44, . . .
3 ∗222, ∗223, ∗224 . . .

∗233, ∗234, ∗235 ∗236 ∗237, ∗238, ∗239, . . .
∗244 ∗245, ∗246, ∗247, . . .

∗2k2k3 (k3 ≥ k2 > 4)
∗333 ∗334, ∗335, ∗336, . . .

∗3k2k3 (k3 ≥ k2 > 3)
∗k1k2k3 (k3 ≥ k2 ≥ k1 > 3)

4 ∗2222 ∗k1k2k3k4 (max1≤i≤4 ki > 2)
5 ∗k1k2k3k4k5
6 ∗k1k2k3k4k5k6
7 ∗k1k2k3k4k5k6k7
...

...

Table 4.1: Our enumeration of all two-dimensional kaleidoscopic orbifolds based on the
cardinality and the universal cover of the orbifolds. The orbifolds on each row have the
same N, which is the cardinality of the underlying polygon.

The rest of polygonal kaleidoscopic orbifolds are hyperbolic, and there are no bad
hyperbolic orbifolds. There are three cases:

1. three mirrors;

2. four mirrors;
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3. five or more mirrors.

An orbifold is hyperbolic if its has five or more mirrors (e.g. Figure 8.7 (c)). In addition,
all quadrangular orbifolds except ∗2222 are hyperbolic (e.g. Figure 8.7 (b)). Finally,
triangular hyperbolic orbifolds include six sub-types:

1. ∗23k where k > 6;

2. ∗24k where k > 4;

3. ∗2k2k3 where k3 ≥ k2 > 4;

4. ∗33k where k > 3;

5. ∗3k2k3 where k3 ≥ k2 > 3;

6. ∗k1k2k3 where k3 ≥ k2 ≥ k1 > 3.

Notice the three cases, each of which corresponds to a Euclidean orbifold that serves as
the border between the set of spherical and the set of hyperbolic orbifolds, namely, ∗236
for type (1), ∗244 for type (2), and ∗333 for type (4).

Our enumeration of all two-dimensional kaleidoscopic orbifolds based on the com-
bination of the cardinality of the underlying polygon and the type of its universal cover is
shown in Table 4.1. We provide the computations behind our enumeration in Chapter A.



22

Chapter 5: User Interface Design

Our orbifold visualization system consists of two components: a design panel and the
display (Figure 5.1). We employ the Irrlicht game engine [3], which provides an effec-
tive balance between interactivity and functionality.

Figure 5.1: The interface of our design system. The left panel displays the universal
cover of a dragon scene, while the right panel shows our design interface for arbitrary
two-dimensional kaleidoscopic orbifolds. The interactive design panel can display the
Euler characteristic, allowing users to gain insights into the classification of orbifolds.

In the design panel, the user can specify the type of the scene by entering its orbifold
notation in the form of a number N for the number of walls in the scene and a list of N

numbers, k1,k2, ...,kN . Here, ki indicates that the angle of the i-th corner is π

ki
.

The default value of N is five, and five evenly spaced nodes are displayed on the
disk inside the design panel (Figure 5.1), each of which has a default value of two, i.e.
∗22222. The user can change the value of each node, which can be a non-integer in
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order to create non-orbifold scenes (Figure 8.1 (c)). The user can also change N, which
results in a room with more or fewer walls. The default value for each node in the new
setting is again two. Recall that there are two cases that are not physically realizable:

1. a circular room with a single mirror (N = 1) that self-intersects at an angle not
equal to π (∗k where k > 1);

2. a room with two mirrors whose two intersection angles are mutually distinct
(∗k1k2 where k2 > k1).

Thus, we disallow these cases from occurring during the design phase. For example,
when N = 1, the value of the only node is set to one and cannot be changed. Similarly,
when N = 2, if the user changes the value of one node, the value of the other node is
automatically updated to match it.

Given the orbifold notation, our system instantaneously generates an empty room (a
right polygonal prism) whose floor and ceiling are congruent to the orbifold and whose
walls are the sides of the prism. In our system, it is possible to have multiple mirrors
on a wall as shown in Figure 1.2. The user can also change the height of the room, the
color and attenuation of a mirror, and the textures for the ceiling and the floor. Objects
can be added to the scene, whose locations, orientations, sizes, base colors, and material
properties (e.g., marble, glass) can be modified from their default values as needed.
Light sources can also be added to the scene, with control over their locations, shapes,
and optical properties. Unwanted objects and light sources can be removed from the
scene.

All of the above scene design operations are interactively rendered in order to sup-
port the What-You-See-Is-What-You-Get (WYSIWYG) paradigm, and all of the exam-
ples included in this dissertation were created using our design system.

5.1 2D Layout Design

The purpose of our design panel is to allow users to correlate the differences among
orbifolds and follow the orbifold enumeration in Chapter 4. Additionally, we display
the Euler characteristic of orbifold, which is related to its area in underlying space.
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An example of the procedure for designing 2D layouts of orbifolds is shown in Fig-
ure 5.2. The left side of the figure displays the created 2D layout, which includes the
orbifold logo, with each edge depicted in a different color. The example, which con-
sists of 5 steps, illustrates the procedure through the 2D layout by the design panel:
∗ → ∗22 → ∗33 → ∗233 → ∗333 → ∗2333. Users can also observe the change in the
value of the Euler characteristic from 1 → 1

2 → 1
3 → 1

12 → 0 →−1
4 .

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 5.2: This figure shows an example of a 2D orbifold layout designed through a
design panel. In step 1, we modify the polygon cardinality of ∗ from 1 to 2, creating
∗22. Moving to step 2, we change the corner number from 2 to 3, resulting in ∗33.
Continuing to step 3, we alter the polygon cardinality of ∗33 from 2 to 3, generating
∗233. Step 4 involves changing the corner number from 2 to 3, which results in ∗333.
Finally, in step 5, we adjust the polygon cardinality of ∗333 from 3 to 4, producing
∗2333.
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As demonstrated in Chapter 6.1, when the cardinality of the underlying polygon
N ≥ 4, every cut edge in the decomposition gives rise to a free variable. Consequently,
there are N − 3 free variables for forming the polygon. Our user interface supports
adjusting these free variables to generate different polygons for an orbifold. We illustrate
an example of changing the free variable in a 2D layout for ∗23456 (Figure 5.3). Moving
from left to right, adjusting the free variables in the spin box at the bottom of the figure
automatically updates the polygon. In the left figure, the default setting for the free
variable is 1.4. We initially modify the variable to 2.0 for the first cut (dashed blue
edge) in the middle figure and subsequently adjust it to 2.0 for the second cut (dashed
blue edge) in the right figure.

1.4 1.4 2.0 1.4
2.0 2.0

Figure 5.3: Users can modify the free variables in the spin box to create various polygons
for ∗23456. The dashed black edge represents the fixed variable, while the dashed blue
edge indicates the variable that users alter.

In addition, users have the option to adjust the position of the 2D layout. As illus-
trated in Figure 5.4, the construction of the 2D layout for ∗23456 is based on the green
geodesic, indicated by the red arrow. Users are able to relocate the polygon by dragging
the red arrow to a different position (Figure 5.4, top). Moreover, rotating the red ar-
row allows users to rotate the polygon while keeping the position of the red arrow fixed
(Figure 5.4, bottom).
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Figure 5.4: Users drag the red arrow to position the polygon for ∗23456 in a different
location (top) and rotate the red arrow to orient the polygon in a different direction
(bottom).

5.2 Mirror Room Design

After introducing the interface for constructing the polygon for an orbifold, we will
generate a room for visualization using the mirror metaphor. In this chapter, a step-by-
step example of creating a mirror room (Figure 5.5 (a-g)) is presented. In (a), the design
panel creates the underlying polygon for ∗22222. This polygon serves as the floor in
(b). The wall and ceiling of the room are automatically generated in (b). Users can
specify the height and meshing resolution for the floor, the ceiling, and the walls. In
step (c), users can apply texture or solid color to the floor and ceiling and specify the
supported materials for rendering. After creating the specific floor and ceiling, users are
able to add mirrors to the walls in (d). In this step, the reflectivity of each mirror can be
adjusted. The mirrors can be specified to be partial and colorful, and multiple mirrors
can be attached to one wall. After creating the mirror room. In (e), users can add objects
and light sources, and specify the textures of the objects, the intensities, and the colors
of the light sources. Additionally, users have the option to interactively transform the
objects. After creating the scene, users can display the universal cover of objects in (f).
The number of reflections is controlled in the panel. Additionally, the transformation
will be synchronized when users transform the objects. In (g), by choosing to render the
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scene, the rendering engine will create a photo-realistic result of the mirror scene.
At the core of our system is the ability to create a room given any arbitrary two-

dimensional kaleidoscopic orbifold and to correctly deform an object in the scene when
it moves. In addition, in our interactive design system, reflections are not explicitly
generated. Instead, we emulate the mirror effects by creating copies of the original
room which together approximate the universal cover of the orbifold. We will provide
details on each of these topics next.
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(a) (b)

(c)(d)

(e) (f)

(g)
Figure 5.5: This figure shows the interactive mirror room design process, including
creating the underlying polygon for an orbifold (a), constructing the room with walls
and a ceiling (b), attaching textures to the floor and ceiling (c), placing mirrors on the
walls of the room (d), adding objects and light sources (e), generating an interactive
universal cover of the orbifold (f), and rendering the mirror room (g).
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Chapter 6: Construction of Polygons for Orbifolds

In this chapter, we present the proposed algorithms for constructing polygons for orb-
ifolds. This includes the 2D layout algorithm for creating arbitrary non-Euclidean orb-
ifolds (Chapter 6.1), the meshing algorithms for rooms with floor, ceiling, and walls
(Chapter 6.2), and the algorithm for creating a universal cover in Shader for real-time
rendering pipeline (Chapter 6.3).

6.1 2D Layout Algorithm

We first compute the Euler characteristic of the orbifold O. If χ(O) = 0, i.e. a Euclidean
orbifold, it is then ∗2222, ∗333, ∗236, or ∗244. As we know the internal angles and
the ratios between the side lengths, we can place the vertices of the underlying triangle
or square on the floor. Then, with a user-specified room height, we create the ceiling
polygon by duplicating the floor polygon and raising it to match the height. Both the
floor and the ceiling are represented by a triangular mesh, so are the rectangular walls
in the room.

In the case of a non-Euclidean orbifold, its universal cover is either the sphere or
hyperbolic space. We employ the planar model introduced in Chapter 3.1 to create a
polygon for a given orbifold on the plane. The only difference in construction is that
the geodesic for a spherical orbifold is identified by antipodal points (Chapter 6.1.1);
however, for a hyperbolic orbifold, it is identified by symmetric points (Chapter 6.1.2).
In the end of the chapter, we also introduce the construction of infinity corners for a
hyperbolic orbifold (Chapter 6.1.3).

6.1.1 Spherical Orbifolds

As shown in Table 4.1, the underlying polygon of a spherical orbifold is either a mono-
gon, a diangle, or a triangle. In all of these cases, O can be contained inside a hemi-



30

sphere. That is, under the stereographic projection, it can be contained inside the unit
disk in the complex plane. For the monogon, i.e. ∗, the equator is the mirror. For a
diangular orbifold ∗kk (k > 1), the corner points are on the real axis which are con-
nected by a pair of circle segments that intersect at the corner points at π

k . Note that the
stereographic projection is conformal [17], i.e. angle-preserving, thus our choice of the
angles at the intersection points. The triangular orbifold ∗22k (k > 1) is exactly half of
the orbifold ∗kk for the same k (Figure 6.1 (top)).

k k

p1

p2

p3

p1 p1

p2

p3

k
2

2

*k1

*k2

*k3

d12 d12

d23

d12

d23
*k2

d31

Figure 6.1: In the stereographic plane, the ∗ is realized as the unit disk (top : left). A
∗kk orbifold can be created by placing its corner points at a pair of antipodal points on
the unit disk (top : middle). The ∗22k type of orbifold is half of the ∗kk orbifold (top :
right). The ∗23k (k = 3,4,5) can be constructed as shown in the bottom row.

Finally, the orbifolds ∗23k (k = 3,4,5) can be constructed by placing the corner
points (Figure 6.1 (bottom)) in the stereographic plane as follows. Let p1, p2, p3 be the
corners of the orbifold corresponding to 2, 3 and k, respectively. The spherical lengths,
di,i+1, of the edges pi pi+1 in the polygon are uniquely determined by the angles π

ki
, π

ki+1
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and π

ki+2
of the polygon as follows [67]:

di,i+1 = cos−1

cos
(

π

ki+2

)
+ cos

(
π

ki

)
cos

(
π

ki+1

)
sin

(
π

ki

)
sin

(
π

ki+1

)
 (6.1)

where i = 1,2,3, d3,4 = d3,1, k4 = k1 = 2, k5 = k2 = 3, k3 = k, and p4 = p1. With this
information, we first place the vertex p1 at (1,0) in the complex plane. Next, we com-
pute a geodesic emanating from p1, along which we travel for a spherical distance of
d1,2 to find p2. Since p1 and p2 are both represented as complex numbers in the stere-
ographic plane, their spherical distance can be computed from their complex number
representations as follows [34]:

d(p1, p2) = 2tan−1
(∣∣∣∣ p2 − p1

1+ p1 p2

∣∣∣∣) (6.2)

where p is the conjugate of a complex number p. Solving for p2 in Equation 6.2 can
be challenging given any arbitrary geodesic γ . However, on the unit circle in the stereo-
graphic plane, one can find p2 without the need to solve Equation 6.2. This is because
the unit circle corresponds to the equator in the sphere under the stereographic projec-
tion, thus the spherical distance between the two points is the same as the arc distance
between them on the unit circle. However, γ is not always the unit circle. To address
this, we identify a translation in the sphere, which, under the stereographic projection,
takes γ (Figure 6.2 (left): the arc) to the upper-half of the unit circle. Such a translation
can be modelled by Möbius transformations [11] that have the following form:

f (z) = eiθ z− z0

z0z+1
. (6.3)

Here, θ ∈ [0,2π) and z0 and z are complex numbers. A Möbius transformation is
uniquely determined by three pairs of corresponding points [34]. We first extend γ

until it intersects the unit disk and map the intersection points to (−1,0) and (1,0), re-
spectively (Figure 6.2 (left)). We select the third point to be middle point of γ , which is
mapped to (0,1). Call this Möbius transformation M. Since Möbius transformations in
the stereographic plane correspond to rotating the sphere before the stereographic pro-
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jection, spherical distance is preserved M. Thus, we can find the point M(p2) on the unit
circle which has an arc distance of d1,2 from M(p1). Finally, performing the inverse of
M, which is also a Möbius transformation to M(p2), we can find p2 = M−1(M(p2)).

From p2, we compute a second geodesic which has an angle of π

k2
with the first

geodesic. Then, travelling along the new geodesic for a spherical distance of d2,3, we
can locate p3. Thus, we have constructed the ∗23k type of orbifolds (Figure 6.1: bottom
row).

pi

M(pi)

pi

M(pi)

pi+1

M(pi+1)

pi+1

M(pi+1)

Figure 6.2: Given a point pi, we simplify the computation of pi+1 by performing a
Möbius transformation in the stereographic plane for spherical orbifolds (left) and the
Poincaré disk for hyperbolic orbifolds (right). In both cases, the unique Möbius trans-
formation M maps the extended geodesic (including the intersections with the unit disk)
to the upper semi-circle for spherical orbifolds and line segment between (−1,0) and
(1,0) for hyperbolic orbifolds. In addition, the center of extended geodesic is mapped
to (0,1) in the spherical case (left) and (0,0) in the hyperbolic case (right). Then we
identify M(pi+1) from which we can recover pi+1 using the inverse of M.

6.1.2 Hyperbolic Orbifolds

We now consider the hyperbolic case, where χ(O) < 0. The hyperbolic space can be
modelled by the Poincaré disk [20], which is the interior of the unit disk in the plane.
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Under this model, the geodesics of the hyperbolic space are circles that intersect the
boundary of unit disk at the right angle (Figure 3.3 (right)). Recall that a hyperbolic
orbifold is a polygon with three or more sides (Table 4.1). To create such a polygon,
we follow the same approach for spherical orbifolds. That is, we start with the location
of p1 in the Poincaré disk and a geodesic emanating from p1. We then travel along this
geodesic for a prescribed distance to locate p2. From there, we identify a new geodesic
whose angle with the original geodesic is π

k2
, which we follow to identify p3. This

process terminates once when we have identified pN . The main difference lies in the
fact that the hyperbolic distance between two points in the Poincaré disk is different
from the spherical distance of the same two points in the stereographic plane.

Given a triangular hyperbolic orbifold ∗k1k2k3, the length of the edge between pi

and pi+1 (i = 1,2,3, d3,4 = d3,1, k4 = k1, k5 = k2, and p4 = p1) is given by [67]

di,i+1 = cosh−1

cos
(

π

ki+2

)
+ cos

(
π

ki

)
cos

(
π

ki+1

)
sin

(
π

ki

)
sin

(
π

ki+1

)
 (6.4)

In addition, when represented as complex numbers in the plane containing the Poincaré
disk, the hyperbolic distance between pi and pi+1 is given by [34]:

d(pi, pi+1) = ln
(
|1− pi pi+1|+ |pi+1 − pi|
|1− pi pi+1|− |pi+1 − pi|

)
(6.5)

Similar to the case of spherical orbifolds, finding pi+1 from pi on an arbitrary
geodesic γ in the Poincaré disk requires solving Equation 6.5 for pi+1 which can be chal-
lenging. To simplify the matter, we identify the hyperbolic translation in the Poincaré
disk that takes γ (Figure 6.2 (right): the arc) to the line segment from (−1,0) to (1,0)
in the Poicnaré disk (Figure 6.2 (right)). This translation takes the intersection with the
unit circle (two dark green points on the unit circle) to (1,0) and (−1,0) (the rightmost
and the leftmost burgundy points). It also takes the middle points on γ (the middle dark
green point) to (0,0) (the middle burgundy point). Such a translation can be modelled
by a Möbius transformation of the following form:
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f (z) = eiθ z− z0

1− z0z
(6.6)

where θ ∈ [0,2π) and |z0| < 1. Call the translation M. Since translations maintain
hyperbolic distances, the hyperbolic distance between pi and pi+1 is the same as the
distance between M(pi) and M(pi+1). However, since M(pi) and M(pi+1) are on the
real axis, it is easier to solve Equation 6.5. Once we have found M(pi+1), we can recover
pi+1 by applying M−1.

However, deciding the side lengths of a hyperbolic polygon with at least four edges
is more challenging as there are no published formulas to the best of our knowledge. To
address this, we compute the side lengths based on two facts [51]: (1) any quadrangular
hyperbolic polygon can be decomposed into the disjoint union of at most two quads with
two right angles (∗22k3k4), and (2) any hyperbolic polygon with at least five sides can
be decomposed into the disjoint union of a finite number of quads of the type ∗22k3k4

and pentagons of the type ∗2222k5, i.e. four right angles. Examples of the two facts are
shown in Figure 6.3.

The side lengths of the ∗22k3k4 polygon (Figure 6.4 (left)) are given by [67, 51]:
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d4,1 = sinh−1

cos
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)
+ cos
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π
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)
cosh(d1,2)
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(

π
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)
sinh(d1,2)


(6.7)

where d1,2, the length of the cut edge in the decomposition, is a free variable. This is
similar to the case where the width and length of the ∗2222 orbifold (a rectangle) are
free variables.

A generic quadrangular orbifold (∗k1k2k3k4) can be decomposed into the disjoint
union of two quads (∗22k1k2) and (∗22k3k4) (Figure 6.3, left). This allows us to com-
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*3*4
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p1

p2
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p4

p5
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Figure 6.3: Two example scenarios of our decomposition algorithm for hyperbolic orb-
ifolds: a quad is divided into two ∗22k3k4 type quads (left), and a hexagon is divided
into two ∗22k3k4 quads and two ∗2222k5 pentagons (right).

pute side lengths of the two special quads, which, when combined, give rise to the side
lengths of the generic quad.

The side lengths of the ∗2222k5 polygon (Figure 6.4 (right)) can computed as fol-
lows [67, 51]:
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(6.8)

where d2,3 and d5,1, the cut edges in the decomposition, are free variables.
Generic pentagons and higher-order N-sided polygons can be decomposed as the
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union of N − 4 pentagons of the type ∗2222k5 with up to two additional quads of the
type ∗22k1k2. To do so, we first consider the simplest case where there exist ki = ki+1 = 2
and k j = k j+1 = 2 where i, i+ 1, j, j+ 1 are mutually distinct. We can find a geodesic
that intersects pi−1 pi and pi+1 pi+2 at the right angle. This geodesic removes from the
original polygon a pentagon involving pi, pi+1, and pi+2 which has four right internal
angles, thus the type ∗2222k5. The remaining polygon has one fewer vertex and still
has four internal right angles (Figure 6.3). Repeating this process can lead to N − 4
pentagons of the type ∗2222k5. On the other hand, a generic polygon with at least five
edges can be reduced into the simpler setting by removing up to two quads of the type
∗22k3k4. We can then compute the side lengths of each of the sub-polygons, which,
when combined, give the side lengths of the original polygon.

d1,2

d2,3

d3,4

d4,1 *k3*k4

*2 *2

*k5

d1,2

d2,3

d3,4
d4,5

d5,1
*2 *2

*2
*2

Figure 6.4: The special quad ∗22k3k4 (left) and the special pentagon ∗2222k5 (right) are
the building blocks of our decomposition algorithm. The free variables are colored in
red, which correspond to the edges (dashed) introduced during the decomposition.

Every cut edge in the decomposition gives rise a free variable, which can be modified
by the user. The default value for the free variables is set to 1.4.

With our algorithm, any spherical and hyperbolic orbifold can be constructed given
its orbifold notation. Figure 6.11 show two example orbifolds with their universal cov-
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ers.

6.1.3 Infinity Corners

In hyperbolic orbifolds, where k can be ∞, the vertex at the corner is infinitely distant in
hyperbolic space. Our algorithm in Chapter 6.1.2 is also adapted to construct orbifolds
with infinity corners. However, the following modifications are made: the formulation
for calculating the length of edges in Equation 6.4, Equation 6.7, and Equation 6.8 are
invalid when k = ∞, as shown in the last row of Table 6.1. The last column in Table 6.1
indicates the position to which a geodesic in (0,0) advances with the distance of c0 in
the real axis. From the table, we observe that when k ≥ 106, the geodesic approaches
the boundary of the disk with a radius of 1. Therefore, to cope with infinity corners,
we use a large value k = 106 to prevent the calculations from being invalid in the above
equations. We present the examples of the construction of infinity corners in Figure 6.5,
where each vertex lies on the boundary of the Poincaré disk.

k a = sin π

k b = 1
a c0 = sinh−1 (b) cosh−1 (b) d = ec0−1

ec0+1

101 0.309017 3.23607 1.89057 1.84273 0.73764
102 3.14108∗10−2 3.18362∗101 4.154 4.15351 0.969082
103 3.14159∗10−3 3.1831∗102 6.45618 6.45617 0.996863
104 3.14159∗10−4 3.1831∗103 8.75876 8.75876 0.999686
105 3.14159∗10−5 3.1831∗104 11.0613 11.0613 0.999969
106 3.14159∗10−6 3.1831∗105 13.3639 13.3639 0.999997
107 3.14159∗10−7 3.1831∗106 15.6665 15.6665 1
108 3.14159∗10−8 3.1831∗107 17.9691 17.9691 1
109 3.14159∗10−9 3.1831∗108 20.2717 20.2717 1
1010 3.14159∗10−10 3.1831∗109 22.5743 22.5743 1

∞ ∞ ∞ ∞ ∞ NaN

Table 6.1: Calculating the accuracy of infinite corners. The first row shows the formu-
lation for calculations, and the numerical accuracy is 6 digits. NaN is not a number.
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(a) ∗∞∞∞ (b)∗∞∞∞∞

(c) ∗∞∞∞∞∞

Figure 6.5: Our algorithm constructs the infinity corners represented by ∗∞∞∞ (a),
∗∞∞∞∞ (b), and ∗∞∞∞∞∞ (c).
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6.2 Meshing of Floor, Ceiling, and Walls

While polygons can be constructed for arbitrary orbifolds, the polygons need to be tes-
sellated with sufficient resolution in order to generate high-quality rendering results. In
this chapter, we first introduce the triangulation of floors and ceilings in Chapter 6.2.1,
after that, we demonstrate the triangulation of walls in Chapter 6.2.2 for producing mir-
ror rooms, and show the meshed results of rooms in Chapter 6.2.3.

6.2.1 Floor and Ceiling Tessellation

A floor and a ceiling are an orbifold, which is modeled by a polygon bounded by
geodesics in the stereographic plane or the Poincaré disk. Given the vertices of a poly-
gon defining a kaleidoscopic orbifold in the plane. Numerous traditional triangulation
methods exist for polygons in Euclidean space [15, 47, 25]. However, these approaches
either fail to account for the geometry in non-Euclidean spaces or are unable to main-
tain a smooth contour for polygons of non-Euclidean orbifolds. We first describe the
fundamental process of constructing a regular grid-based tessellation in the Euclidean
plane. Subsequently, we use this tessellation to form regular quadrilaterals (Figure 6.6),
followed by the triangulation of these quads. Although the above approach successfully
preserves the edges of non-Euclidean polygons, the vertices along the lines do not lie
on the geodesics in non-Euclidean spaces, leading to less regular triangulation in such
spaces.

We first present a geodesics-based tessellation that achieves a more regular pattern in
non-Euclidean spaces, as detailed in Chapter 6.2.1.1. Nonetheless, the geodesics-based
tessellation cannot preserve the contour for highly complex polygons. A contour-based
tessellation is designed to maintain the contours of complex polygons, as discussed
in Chapter 6.2.1.2.
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Figure 6.6: We apply a grid-based tessellation to the spherical orbifold ∗222 (left) and
the hyperbolic orbifold ∗22222 (right). The green lines represent the polygons, while
the black lines are the tessellations.

6.2.1.1 Geodesics-based Tessellation

To build a tessellation, a quad-dominant mesh is first generated which we then trian-
gulate. To generate the mesh, we consider two families of geodesics that are mutually
perpendicular. For a spherical polygon, we consider four evenly spaced points on the
unit disk in the stereographic plane. The four points form two pairs of antipodal points
P,Q and S,T (Figure 6.7 (top)). We then generate a family of geodesics that pass through
P and Q and another family of geodesics that pass through S and T . We then extract the
intersections of the two families of geodesics and keep those that are inside the orbifold.
In addition, the intersection of these geodesics and the boundary of the orbifolds are
also extracted. Using these intersection points, we build a quad-dominant mesh which
we triangulate. For a hyperbolic orbifold, we also consider two families of geodesics.
Again, we choose four evenly-spaced points on the boundary of the unit disk that form
two pairs of symmetric points P,Q and S,T (Figure 6.7 (bottom)). For the pair P,Q, we
generate a family of geodesics by locating a point P′ to the left of P and a point Q′ left of
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Q such that the arc distances
⌢

PP′ =
⌢

QQ′. Similarly, we can select P′ and Q′ to be on the
right side of P and Q, respectively. By generating a family of such P′ and Q′ with even
distance, we have created a family of geodesics that are parallel to the geodesic PQ. We
can create the second family of geodesics by repeating the same procedure on S and
T . The intersections between the two families of geodesics and between the geodesics
and the boundary of the orbifold O provide the set of sample points that can serve as
the vertices of the quad-dominant mesh, which we triangulate. In the example shown

P

PP’

QQ’

S

TT’S
S’

T

Q

Figure 6.7: The creation of quad-dominant mesh is depicted in this figure. For the
spherical polygon (top), the geodesic family: P and Q (left), the family: S and T (center),
and the intersections between the geodesic family: PQ, ST (right). For the hyperbolic
polygon (bottom), the geodesic family: PQ and P′Q′ (left), the family: ST and S′T ′

(center), and the intersections between the geodesic family: PQ, P′Q′, ST , and S′T ′

(right).
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in Figure 6.8, the geodesics-based approach exhibits a loss of resolution in the complex
corners, where the tessellations cannot form a quad. Therefore, we introduce a faster
contour-based approach for creating tessellations in the next chapter.

Figure 6.8: This figure demonstrates the poor results of the geodesics-based tessellations
for the spherical orbifold ∗ (left) and the hyperbolic orbifold ∗222inf inf (right). The red
portions highlight the contours that cannot be covered by the quads.
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6.2.1.2 Contour-based Tessellation

To maintain the contour of a complex polygon, a set of points are first sampled along
each edge of the polygon, including the vertices. In such a case, all the samples form a
loop (Figure 6.9 (left)). After that, we identify the middle sample, which, when coupled
with the first sample, divides all samples into top and bottom sides. Consequently, the
geodesic connecting the samples from left to right in the top side and the bottom side
is obtained, forming a set of geodesics (Figure 6.9 (center)). In the specific case of ∗,
where the polygon is a unit circle, all samples are located on the circumference of the
unit circle, and all geodesics coincide with the unit circle. In this special case, we em-
ploy straight lines instead of geodesics. By discretizing the geodesics with a fixed length
of step, we build a set of quads for triangulation (Figure 6.9 (right)). In comparison to
the geodesics-based approach, the contour-based approach is faster (without checking
geodesics-based intersections), albeit with some loss of regularity in one direction. Nev-
ertheless, it effectively preserves the contour of polygon.

6.2.2 Wall Tessellation

A wall is essentially the tensor product of a line segment (height) and an arc (geodesic
in non-Euclidean spaces). Thus, we tessellate the line segment and the arc separately.
A set of evenly spaced sample points are placed on the line segment as well as the arc.
However, the distance on the arc is measured not be the distance in the stereographic
plane and the Poincaré disk. Instead, we measure the distance between adjacent sam-
ple points by the true distances in spherical space (Equation 6.2) and hyperbolic space
(Equation 6.5). The tensor product of both tessellated line segment and arc result in a
quad mesh, which we triangulate.

6.2.3 Results of Mirror Rooms

Following the triangulation of the floor, ceiling, and walls, we present mirror rooms
corresponding to orbifolds in Figure 6.10. In the first row of Figure 6.10, we illustrate
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Figure 6.9: This figure illustrates the steps of contour-based tessellation for the spherical
polygon ∗222 (top) and the hyperbolic polygon ∗222inf inf (bottom). The green dots
represent samples on the edges of the polygons (left), while the center image depicts the
geodesics connecting the pairs of the red dots and the green dots. The final step involves
forming a set of geodesics between the adjacent geodesics to create the quad-dominant
tessellation.

the rooms corresponding to the spherical orbifolds: ∗, ∗22, and ∗222. The second row
of Figure 6.10 shows the rooms corresponding to the Euclidean orbifolds: ∗236, ∗333,
and ∗2222. In the third row of Figure 6.10, we present three examples of the hyperbolic
orbifolds: ∗237, ∗2223, and ∗22222.
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∗ ∗22 ∗222

∗236 ∗333 ∗2222

∗237 ∗2223 ∗22222

Figure 6.10: Mirror rooms are displayed for spherical orbifolds (top), Euclidean orb-
ifolds (middle), and hyperbolic orbifolds (bottom). The floors are depicted in peach
color, the walls are represented in light blue, and the ceilings are indicated in dark blue.
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6.3 Universal Cover Construction

Being able to see the universal cover, i.e. all mirror reflections, can be important for
a user while exploring our tool. However, capturing mirror reflections can be compu-
tationally expensive with high-quality renderers such as Mitsuba [39]. Williams and
Zhang [81] address this for Euclidean kaleidoscopic orbifolds by creating a finite num-
ber of copies of the reflections of the original room that approximate the universal cover.
This is based on two observations. First, as copies are farther away from the room, their
images perceived by the viewer approach the vanishing line and thus do not contribute
much to the pixels. Second, the color intensity of faraway copies diminishes as the num-
ber of bounces off from the mirrors increases. We employ a similar approach, which
focuses on non-Euclidean orbifolds. Four examples of universal covers created by our
method are shown in Figure 6.11: (a) the spherical orbifold ∗235, (b) the hyperbolic
orbifold ∗23456789(10)(11), (c) the hyperbolic orbifold ∗∞∞∞, and (d) the hyperbolic
orbifold ∗∞∞∞∞∞.

In our system, the construction of the universal cover for Euclidean orbifolds closely
follows that of Williams and Zhang [81], which computes the translational cover of
the orbifold and generates additional copies of the translational cover using either the
Gaussian integer lattice Z[i] for the ∗2222 and ∗442 cases and the Eisenstein integer
lattice Z[ω] for the ∗333 and ∗632 cases.

For spherical and hyperbolic orbifolds, the notion of translational cover is not well-
defined. Consequently, we employ the following process. Starting from the original
room, we iteratively add a virtual copy by reflecting the room across one of its mirrors.
It is also possible to reflect a virtual room across its mirror. To avoid duplicates, i.e. a
virtual room that is discovered through two different paths from the original room, we
compare the center of a potentially new room to the centers of already visited room and
virtual rooms [83].

To locate the corners of each newly added room, we apply reflections in the spheri-
cal or hyperbolic spaces to the already visited room involved in the reflection. Inside the
stereographic plane, a reflection in the spherical space can be represented as the com-
positions of some Möbius transformations (Equation 6.3) and the conjugation function
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with respect to the real axis f (z) = z. Similarly, inside the Poincaré disk, a reflection in
the hyperbolic space can also be expressed as the composition of some Möbius trans-
formation (Equation 6.6) and the conjugation function with respect to the real axis. The
Möbius transformation is stored in the form of a 2× 2 matrix whose entries consist of
a, b, c, and d [10].

For each copy of the room we save the transformation needed to take the original
room to the copy, which is a combination of a Möbius transformation and up to one
conjugation function. In addition, for each object in the original room, we also save its
Möbius transformation. Then, the position and orientation of an object in a virtual copy
of the original scene can be calculated by combining the matrix for the virtual room
and the matrix of the same object in the original scene. Also, the computation for both
object manipulation and universal cover construction is done using the shader.
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(a) ∗235 (b) ∗23456789(10)(11)

(c) ∗∞∞∞ (d) ∗∞∞∞∞∞

Figure 6.11: Four orbifolds generated using our orbifold layout creation algorithm: (a)
the ∗235 orbifold (spherical), (b) the orbifold ∗23456789(10)(11) (hyperbolic), (c) the
orbifold ∗∞∞∞ (hyperbolic), and (d) the orbifold ∗∞∞∞∞∞ (hyperbolic).
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Chapter 7: Interacting with Orbifolds

Once the orbifold has been realized as a polygonal prism, the user can add objects to
the scene. We present the algorithm for embedding an object in non-Euclidean spaces
in Chapter 7.1 and translating an object in Chapter 7.2.

7.1 Object Embedding

When bringing an object, which is created in a presumably Euclidean space, to a non-
Euclidean space, a natural question to ask is how to perform the embedding. Due to
the difference in their respective distance metrics, it is not always possible to embed
the model in such a way that the length of every edge in the mesh is maintained. To
address this challenge, when embedding the object into the scene, we first place it so
that its center of mass is at the origin of the plane for both the stereographic plane and
the Poincaré disk. The coordinates of the object are now considered their corresponding
coordinates in the stereographic plane and the Poincaré disk. Then, the embedded mesh
is translated to the user-specified initial location with the translation native to the non-
Euclidean space.

As shown in Figure 7.2, the mass center of the dragon (red dot) is positioned at the
center of the stereographic plane (top) and the Poincaré disk (bottom). From the top
view in the third column, we can observe that the mass center is at the center of the
spherical orbifold ∗222 and at the center of the hyperbolic orbifold ∗22222.

7.2 Object Movement

Translations in both the spherical and hyperbolic spaces are isometries. In the spherical
space, translations can be modelled in the stereographic plane by Möbius transforma-
tions according to Equation 6.3. Interestingly, translations in the hyperbolic space using



50

Figure 7.1: This figure shows the embedding of a dragon in the spherical orbifold ∗222
(top) and the hyperbolic orbifold ∗22222 (bottom). The red dot indicates the mass center
of the dragon, and the last column displays the top view.

the Poincaré disk can also be modelled by Möbius transformations according to Equa-
tion 6.6.

We store the Möbius transformation of each object, and update it when the model is
interactively moved inside the room. The Möbius transformation, which corresponds to
a translation of the spherical space or the hyperbolic space, is applied to all the vertices
in the mesh. Additionally, after updating each vertex of the object, the normal must be
recalculated for each triangle of the object.

As shown in Figure 7.2, the dragon undergoes the Möbius transformation along
the real axis from (−1,0) to (1,0) in the stereographic plane (top) and the Poincar’e
disk (bottom). In the stereographic plane, the size of the dragon is deformed in the
sequence: large, middle, small, middle, large. In the Poincaré disk, the size of the
dragon is deformed as follows: small, middle, large, middle, small. The deformation of
the dragon highlights the features of the underlying spaces.
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Figure 7.2: The dragon is translated along the real axis in the stereographic plane (top)
and the Poincaré disk (bottom). The dragon’s mesh is deformed based on its location.
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Chapter 8: Rendering Orbifolds

After interactively designing mirror rooms for arbitrary non-Euclidean orbifolds, we
can visualize the orbifold using a ray-based rendering algorithm. Due to the stereo-
graphic projection in non-Euclidean spaces, the algorithm works for both spherical and
hyperbolic spaces without extra modification in the tracing process. In Chapter 8.1, we
first introduce the curved ray tracing algorithm to render orbifolds with mirrors as a
metaphor. To accelerate the rendering process, we propose handling the tracing with
the boundary of the orbifold and the triangles of objects individually in Chapter 8.2.
Additionally, we demonstrate the modifications to spatial hierarchies for non-Euclidean
spaces in Chapter 8.3.

8.1 Curved Ray Tracing

Once the scene has been constructed, we can either display it interactively during the
design stage (Figure 7) or send it to Mitsuba [39] for high-quality offline rendering.
Mirror scenes in Euclidean space can be rendered using straight rays in Mitsuba without
any modification. However, light rays travel along the geodesics in the spherical and
hyperbolic spaces. When rendering a non-Euclidean scene using Euclidean straight
lines, incorrect appearances result as shown in Figure 8.1 (a). We modify the rendering
algorithms to account for the correct paths for rays (Figure 8.1 (b)). In this chapter,
we first define the curved ray used to render non-Euclidean spaces(Chapter 8.1.1). We
introduce the formulation for spiral-triangle intersection to render triangular meshes in
scenes (Chapter 8.1.2). To achieve photo-realistic rendering of scenes with mirrors, we
illustrate the integration of the curved ray into Mitsuba’s current rendering framework
(Chapter 8.1.3). Finally, we demonstrate our mirror-based visualization across various
visualization tasks (Chapter 8.1.4).
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(a) (b)

Figure 8.1: In (a-b), we show the comparison of the rendering of a hyperbolic orbifold
with straight rays as in the Euclidean space (a) and the geodesics in the hyperbolic space
(b).

8.1.1 Definition of Curved Ray

For highest-quality of results, we make use of ray-tracing type of approach with Mit-
suba. Recall that our non-Euclidean room is modelled by a subset in D× [0,h] where D
is the stereographic plane or Poincaré disk and h is the height of the room. Thus, any
geodesic γ in the space satisfies that its horizontal projection is a geodesic in the spheri-
cal or hyperbolic space. Consequently, γ takes the form of a 3D spiral. To generate the
correct rendering of such scenes, we modify the ray-triangle intersection algorithm in
Mitsuba from line-plane intersection to spiral-plane intersection.

A spiral γ in the room can be given a parameterized form based on a point on the
spiral p and the tangent direction v at p. We decompose v into its horizontal component
vH and its vertical component vY (Figure 8.2).

Therefore, the parametric form of the spiral γ is as follows:

p(t) = Op + rp cos(|vw|t) Ôp p+ rp sin(|vw|t) v̂H + tvY . (8.1)

Here, t is the parameter, Op is the center of the circle arc and rp is the radius for
the geodesic, and |vw| = |vH |

rp
. Ôp p and v̂H are normalized vectors. Figure 8.3 shows
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(a) (b) (c)

Figure 8.2: The decomposition of a spiral in hyperbolic space. The gray disk is the
Poincaré disk in the horizontal plane, and the gray arrow represents the vertical direc-
tion. The spiral (a) is decomposed into the geodesic ray (b) along the direction vH and
the vertical ray (c) along the vertical direction vY .

an example of parameterized spiral. We can then use this form to find the intersection
of the spiral γ with a given triangle on an object in the scene. When there are multiple
intersections with the triangle, we find the one that has the smallest positive t value,
which represents the closest intersection from the reference point p. Based on the above

(a) (b)

(c) (d) (e)

Figure 8.3: The paths and tangents of spirals in hyperbolic space. (a-d) are the paths of
the spirals. (a) |vH | := 0, and |vY | ≠ 0; (b) |vH | ≠ 0, and |vY | := 0; (c) vH is along pO;
(d) |vH | ̸= 0, and |vY | ̸= 0; (e) shows the tangents of the points on the spiral (d).



55

defined curved ray, we can find the precise locations a light rays coming from the viewer,
emanating from the light sources, or bouncing off objects including mirrors in the room.

Next, for determining the incident direction of the spiral interacting with a surface,
the tangent vector T (t) at parameter t is defined. If the spiral is straight, T (t) = v.
Otherwise, the tangent is directly obtained using Equation 8.2:

T (t) = |vH |cos(|vw| t) · v̂H −|vH |sin(|vw| t) · Ôp p+ vY (8.2)

The tangents of the points on the spiral are shown in Figure 8.3 (e).

8.1.1.1 Real-time Scan Conversion with Projection

During design stage, we make use of scan conversion for interactive feedback. Recall
that in this case, we also render the universal cover since we do not model mirror re-
flections during design. For each vertex on an object in the scene or a virtual copy, we
project it to the image plane by using the same spiral-triangle intersection as in the case
of Mitsuba rendering. We then perform barycentric interpolation to find the footprint of
any triangle in the image plane by interpolating their vertices’ locations. Given enough
mesh resolution, the error in this interpolation-based approach is relatively small since
all of its vertices are projected correctly using the spiral-triangle intersection. Figure 8.4
demonstrates the result of scan conversion by projecting triangles onto the screen. The
left column displays the result without using projection in non-Euclidean spaces, while
the right column uses projection by curved rays. In Figure 8.4 (top), showing the spher-
ical orbifold ∗235, the curved wooden frame in the right image appears more straight
than it in the left image. Additionally, the view expands from near to far based on the
number and size of dragons. In Figure 8.4 (bottom), showing the hyperbolic orbifold
∗2352, the scene on the right side with projection by curved rays demonstrates a dif-
ferent view compared to the left side. The results in the right side indicate exponential
shrinkage along curved rays. We deploy a computer featuring an i7-8700K @3.70GHz
CPU and an NVIDIA GeForce GTX 2080 GPU to render the scene in Figure 8.4. For
the spherical orbifold, with 71 symmetries and approximately 2.62×106 triangles, the
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frame rate is approximately 18 FPS. For the hyperbolic orbifold, with 205 symmetries
and around 8.65×106 triangles, the frame rate is about 15 FPS.

Figure 8.4: This figure shows the comparison between projection in Euclidean space
(left) and projection in non-Euclidean spaces (right). The top image represents the
spherical orbifold ∗235, and the bottom image represents the hyperbolic orbifold ∗2352.

8.1.2 Curved Ray-Triangle Intersection

Instead of projecting triangles onto the curved ray backward to render the universal
cover, we need to find the closest intersection between curved rays and triangles in a
forward direction. The basic idea is to first obtain the intersection between the spiral and
the plane where the triangle is located. Subsequently, we check whether the intersection
is inside the triangle or not. By combining the equation of the spiral with the analytic
formulation of a plane, we can numerically solve for the root of the following equation
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(Equation 8.3) using Newton’s method [52]:

f (t) = sin(|vw|t +φ)− (kt +h) (8.3)

where φ , k, and h is the parameters from the reformulation (Equation 8.4).

k =
−(vY ·nt)

rp
√

a2 +b2

h =
(p0 −Op) ·nt

rp
√

a2 +b2

φ = arctan
a
b

sinφ =
a√

a2 +b2

cosφ =
b√

a2 +b2

a = Ôp p ·nt

b = v̂H ·nt

(8.4)

where nt represents the normal of the triangle, and p0 denotes a vertex of the triangle.
In our setup, the default accuracy for the numerical method is 10−6.

To render mirror scenes with curved rays, we must integrate the curved ray into the
current rendering algorithm. We present the details of the modification in Chapter 8.1.3.

8.1.3 Optics-based Visualization

To render Non-Euclidean kaleidoscopic orbifolds, the reflection and refraction of the
curved ray are necessary. We assume that light rays travel along the geodesics defined
in Equation 8.1. Thus, the incident and outgoing directions when a light ray hits a
surface are defined as the tangents of the curved ray at the intersection. The directions
of the light ray are represented in Figure 8.5 (the yellow arrows).

To enable rendering the scene based on the physically based rendering framework in
Mitsuba, we assume that the bidirectional reflectance distribution function of the mate-
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nt

Figure 8.5: A light ray traveling along a curved ray undergoes reflection and refraction
on a surface. The dashed line illustrates the curved path of the light ray, and the solid
yellow line indicates the directions of reflection and refraction, corresponding to the
tangents of the curved rays at the intersection.

rial in the non-Euclidean spaces has the same behavior as in Euclidean space. In order
to address the rendering equation [42], we assume that Lambert’s law still holds, where
the irradiance arriving at the surface varies with the angle of incidence of illumina-
tion [65]. As the change in the variable incident direction is continuous, Monte Carlo
integration by path tracing can be applied to estimate radiance [42, 70, 71]. However,
to reduce variance through multiple importance sampling (MIS), the conversion from a
density for area to a density for solid angle no longer holds. This implies that sampling
from light sources for MIS is not applicable. The conversion of the area-solid angle
density equation is a complex function that depends on the position of the intersection
and the incident directions of the area of light sources. To solve the equation, numer-
ically discretizing the area of light sources at each intersection is necessary. We em-
ploy a photon mapping algorithm [41, 30, 29, 40] to avoid the conversion and achieve
a curved ray tracing, which is a two-stage algorithm involving emitting photons from
light sources, recording the photons for each intersection, and then gathering photons
on surfaces where the camera ray intersects. Therefore, the conversion of the area-solid
angle density equation is numerically estimated. In our implementation, we modify the
SPPM plugin in Mitsuba to incorporate curved ray tracing, and we present the rendering
results in Chapter 8.1.4.
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8.1.4 Visualization of Kaleidoscopic Orbifolds by Mirror Scenes

In this section, we show rendering results of visualization for kaleidoscopic orbifold by
mirror scenes.

Sensing the Orbifold: An orbifold is a topological space that stands on its own.
Using our mirrored scenes, we can produce visualizations that emphasize different as-
pects of an orbifold. For example, for the scene shown in Figure 8.6, we can adjust
the attenuation factors for the mirrors to emphasize the orbifold itself (Figure 8.6 (a))
by setting high attenuation for both mirrors, or the translational cover (Figure 8.6 (b))
by setting high attenuation for one mirror and low attenuation for the other mirror, or
the universal cover (Figure 8.6 (c)) by setting low attenuation for both mirrors. Notice
that in all of these cases, our mirror-based visualization provides a clear sense of the
orbifold, the room.

(a) (b) (c)

Figure 8.6: By varying the attenuations of the mirrors, our visualization can emphasize
the orbifold (a), its translational cover (b), or its universal cover (c).
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Determining the Orbifold Notation: Once an intuitive sense of the orbifold is es-
tablished and the structure of the reflection is observed, it becomes a relatively straight-
forward task to determine the type of the orbifold in terms of its orbifold notation. Given
the power of 3D graphics and animation, we produce either a panorama of the scene or
an animation in which an avatar walks along the walls Figure 8.7. As the avatar ap-
proaches the i-th corner, so do its nearest reflections. There appear to be ki pairs of
avatars approaching the corner. Then, ki pairs of the same avatars leave the corner for
the next one. This helps the user identify ki for the i-th corner. By walking around the
room one time, each corner is visited. This can help the user write down the orbifold
notation. In kaleidoscopic orbifolds with consistent angles on the corners but differ-
ent order of angles, the reflections in the universal covers are not the same. As shown
in Figure 8.8, the left side represents ∗2233, and the right side represents ∗2323. Each
row displays a different view. In the first row, the left scene exhibits two corners with
the pattern ∗22, while the right scene features the pattern ∗23. In the second and last
row, the left scene shows a single corner ∗2, whereas the right scene displays a single
corner ∗3. The configurations inside the orbifolds are identical. Despite both orbifolds
having two ∗2s and two ∗3s corners, the differing corner order results in variations in
reflections in the universal cover.
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(a) *22 (b)*222

(c) *2323 (d) *22222
Figure 8.7: An avatar walks along the walls of the orbifolds. The universal cover is the
sphere for (a-b) and the hyperbolic space for (c-d).
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Figure 8.8: Status scenes for the orbifolds: ∗2233 (left) and ∗2323 (right). Each row
displays views as the viewer rotates from left to right.
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Identifying the Type of the Universal Cover: With the same panorama and walka-
round animations, the user can gain insight into the type of the universal cover. Both
the spherical space and the hyperbolic space can bring unfamiliar experience to some-
one new to the concept. For example, inside the spherical space, objects do not always
appear smaller when they are further away. Specifically, when the viewer is at the south
pole, objects near the north pole appear much wider than the same object at the equator
(Figure 8.7 (a-b)). On the other hand, objects farther away always look smaller in the
hyperbolic space. However, with the seemingly same distance to the viewers, an object
can look much smaller in the hyperbolic space than in the Euclidean space (Figure 8.7
(c-d)). As the objects move around the scene such as the avatar in Figure 8.7, the way
the reflections of the objects deform in non-Euclidean spaces is rather different from
that in the Euclidean space. For example, a reflection of the avatar may suddenly grow
much bigger and then shrink quickly in the spherical space. With a relatively simple
scene (the orbifold), the user can gain insight into the entire universal cover through
mirror reflections. Moreover, as illustrated in Figure 8.10, the Buddha is placed within a
setting with three walls, where each corner has the same angle. The figure displays the
universal cover as the corner transitions from ∗2 to ∗7. In Figure 8.11, the Buddha scene
is positioned within a setting with a ∗2 corner, while the number of walls increases from
2 to 7. From these two figures, we can observe that higher order of symmetry and more
walls at a corner likely lead to hyperbolic orbifolds.

Sensing the Non-orbifold: One of the most fundamental tasks for orbifold visual-
ization is to decide whether a given mirror scene is an orbifold. Non-orbifolds can be
difficult to conceptualize, especially when one or more angles at the corners violates π

k

for k ∈ N+. The resulting rendered images and/or videos can deliver a sense of whether
the room is a kaleidoscopic orbifold. When the room is a kaleidoscopic orbifold, the
viewer should be able to move around the scene and see a consistent larger scene (the
universal cover) that is seamlessly tiled by copies of the original room (the orbifold). On
the other hand, if the viewer sees conflicting results, such as the double-headed dragon
in Figure 8.9, it is an indication of a non-orbifold. In this particular examples, the rooms
have a corner with an angle of π

k where k = 2
3 , which is not an integer.
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Figure 8.9: We render triangular non-orbifolds with corner angles 2π

3 -π

3 -π

3 (left) and
corner angles 2π

3 - π

12 - π

12 (right). Notice the dragon now has two heads.

Sensing the Infinity Corner: In comparison to Euclidean and spherical orbifolds,
a special type of orbifold in hyperbolic space has a corner represented as ∗∞, where the
corner point lies at infinity (on the boundary of the Poincaré disk). However, visualizing
∗∞ is challenging with a 2D texture, as the ∗∞ point is actually at a finite distance in the
disk. Our mirror-based visualization is designed for visualizing the infinity corner. With
mirror reflections, the curved ray approaches corner at ∗∞ will be reflected infinitely,
leading to the attenuation of the light energy to 0. Therefore, the ∗∞ corner will appear
dark but still display reflections around the corner. In Figure 8.12 (a-c), we show the
gradual addition of mirror walls. Interestingly, when there are zero mirrors (a) or one
mirror (b), even though the corner is at infinity, it is difficult to perceive. With two mir-
rors at the infinity corner, the reflections of Buddha shrink into darkness. In Figure 8.12
(d-f), we depict additional infinity corners for Buddha scenes, revealing that the Bud-
dhas will shrink into darkness with multiple infinity corners. With an increasing number
of infinity corners, the Buddhas in the reflections shrink rapidly.
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(a) ∗222 (spherical)

(b) ∗333 (Euclidean)

(c) ∗444 (hyperbolic)

(d) ∗555 (hyperbolic)

(e) ∗666 (hyperbolic)

(f) ∗777 (hyperbolic)
Figure 8.10: The figure depicts the Buddha within an orbifold ∗kkk where k ranges from
2 to 7 (a-f). For k ≥ 4, the underlying space of the orbifold is hyperbolic.
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(a) ∗22 (spherical)

(b) ∗222 (spherical)

(c) ∗2222 (Euclidean)

(d) ∗22222 (hyperbolic)

(e) ∗2222222 (hyperbolic)

(f) ∗2222222 (hyperbolic)
Figure 8.11: The figure shows the Buddha within an orbifold ∗21...2N , where N ranges
from 2 to 6 (a-f). For N ≥ 5, the underlying space of the orbifold is hyperbolic.
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(a) ∗∞∞∞ (0 mirrors)

(b) ∗∞∞∞ (1 mirrors)

(c) ∗∞∞∞ (2 mirrors)

(d) ∗∞∞∞

(e) ∗∞∞∞∞

(f) ∗∞∞∞∞∞

Figure 8.12: We render the hyperbolic orbifold with a corner at infinity by adding one
mirror at a time for ∗∞∞∞ at (a-c). We increase the number of infinity corners from
(d-f). The infinity corner appears dark because the light bounces between mirrors an
infinite number of times, causing the energy of the light ray to attenuate to 0.
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8.2 Analytic Rooms

As described in Chapter 6.2, the mirror walls, floor, and ceiling are triangulated in the
mesh. Nevertheless, the mirror walls, responsible for creating reflections of the original
room, can be analytically represented. Similarly, the floor and ceiling can be analytically
represented. Hence, we can analytically compute the intersection between the room and
the curved ray, resulting in substantial computational overhead savings. Based on our
observation, there are two types of walls: planes and partial surfaces of cylinders. A
plane mirror can be represented by its width and height, while a circular mirror can be
represented by its arc and height. The floor and ceiling can be represented as the closure
of a set of lines and circles on the plane. The ceiling is defined by a specific height. Our
design system can incorporate multiple partial mirrors on a single wall. Each partial
mirror has its unique settings for reflectivity and color. As shown in Figure 8.13, we use
a tree structure to organize the partial mirrors, facilitating the acceleration of intersection
calculations. The approach for curved ray and analytic mirror intersection is the same

Figure 8.13: This figure shows the hierarchical organization of partial mirrors with var-
ious colors on a circular wall (right) within a mirrored room (left).

as the intersection with the bounding of the hierarchical structure Chapter 8.3. We refer
to Algorithm 1 to combine curved ray-triangle intersection and curved ray-analytic room
intersection.
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Algorithm 1 A CURVED RAY INTERSECTS WITH A ROOM AND TRIANGLES

Ensure: Check intersection
1: Initialize boolean variable flg0 as the curved ray intersects with trian-

gles/floor/ceiling at t0
2: Initialize boolean variable flg1 as the curved ray intersects with the mirrors at t1
3: if flg0 and flg1 then
4: if t0 < t1 then
5: return the intersection at t0
6: else
7: Generate a new curved ray based on t1
8: The curved ray intersects with the room and triangles
9: end if

10: else if flg0 and not flg1 then
11: return the intersection at t0
12: else if not flg0 and flg1 then
13: Generate a new curved ray based on t1
14: The curved ray intersects with the room and triangles
15: end if
16: return No intersection

8.2.1 Performance of Rendering by Analytic Rooms

In this chapter, we discuss the performance improvement achieved through analytic
rooms. We demonstrate the impact of using analytic rooms on both accuracy and ren-
dering time.

Since the meshed mirror is an approximate solution of a circular curve, the analytic
mirror is naturally more accurate.

We employ the identical scene depicted in Figure 1.2, using multiple mirrors to as-
sess performance. We use the resolution of the meshed mirror, which produces results
approximating analytic mirrors. For off-line rendering, we made modifications to Mit-
suba 0.6. The rendering was performed on a Linux Cluster comprised of machines
equipped with processors: 2x 20-core 2.50 GHz Intel Xeon Gold 6248 w/ 28160 KB
cache, and memory: 768 GB RAM @2933 MT/s. For each scene in Table 8.1, the
rendering image had a resolution of 896×896, with the integrator parameters as [39]:
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• maxDepth: value=50

• photonCount: value=250000

• rrDepth: value=5

• maxPasses: value=512

• alpha: value=0.7

Additionally, the attenuation of each mirror is set to 0.9. The results of comparison
in Table 8.1 demonstrate that analytic rooms (the underscored orbifold in the table) have
less memory overhead of meshes (total number of triangles) and reduce up to 23.4% of
time overhead over orbifolds. The time saving is only for 512 photon passes; for high-
quality rendering, as illustrated in Figure 1.2, utilizing 4096 photon passes, the increase
in the number of mirror walls and the refinement of meshed walls will contribute to a
greater reduction in overhead of time.

We present a line chart summarizing the time of rendering for each scene in Fig-
ure 8.14. The vertical axis represents the time of rendering for the scene in the hori-
zontal axis. The analytic room (green), meshed level 0 (blue), meshed level 1 (orange),
and meshed level 2 (red) correspond to the first, second, third, and fourth rows for each
scene, respectively. Notably, the analytic room outperforms the meshed rooms, and the
time of rendering increases with the number of triangles. Specifically, the ∗222 scene
requires more time than others due to the increased number of mirrors and deeper curved
ray tracing around the sphere.

In addition to the analytic approach for mirror rooms, we employ hierarchical struc-
tures to reduce the computation of intersection between curved rays and triangles.
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Figure 8.14: The figure illustrates that the analytic room (green line) outperforms the
meshed room in terms of rendering time. Specifically, each scene’s analytic room cor-
responds to the first row in Table 8.1, while meshed levels 0, 1, and 2 correspond to
the second, third, and fourth rows, respectively. Additionally, it is observed that as the
number of triangles increases, the computational overhead also rises.
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Orbifold Type XML (KB) # of Tris (Room) # of Total Tris Rendering Time

∗ S2 11 4 53k 25m
∗ S2 11 1.5k 53k 29m
∗ S2 11 3.4k 55k 30m
∗ S2 11 6.2k 59k 31m

∗22 S2 11 4 52k 43m
∗22 S2 11 0.79k 52k 47m
∗22 S2 11 1.7k 54k 50m
∗22 S2 11 3.1k 56k 52m
∗222 S2 15 4 53k 51m
∗222 S2 14 0.9k 54k 59m
∗222 S2 14 2.0k 56k 60m
∗222 S2 14 3.4k 58k 61m
∗333 E2 14 22 51k 3.2m
∗444 H2 15 4 53k 32m
∗444 H2 14 0.92k 53k 39m
∗444 H2 14 1.9k 55k 40m
∗444 H2 14 3.3k 58k 41m
∗2222 E2 18 28 51k 3.2m
∗3333 H2 18 4 54k 28m
∗3333 H2 18 2.2k 55k 35m
∗3333 H2 18 4.9k 58k 36m
∗3333 H2 18 8.6k 63k 37m

Table 8.1: This table presents the scene settings for rendering, with the last column
indicating the rendering time in minutes. The underscored scene represents the room
with analytic representation. The first row of the table includes the orbifold used for
testing, the type of the orbifold, the size of the XML file used in Mitsuba, the number
of triangles for the room in the scene (including the floor, ceiling, and mirrors), the total
number of triangles (including the room and the objects), and the time of rendering. All
values in the table for measurements are rounded to two decimal places.
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8.3 Hierarchical Structures

The process of curved ray tracing relies on intersections between curved rays and tri-
angles to render objects in a scene. Therefore, optimizing and accelerating this process
is crucial for rendering performance. Two commonly used hierarchical structures are
bounding volume hierarchy (BVH) and Kd-Tree [44, 76, 84, 59, 60, 37]. Research sug-
gests that the choice between these structures depends on the scene’s complexity [73].
BVH performs better in simpler and moderately complex scenes for ray tracing. How-
ever, for more complex scenes, Kd-tree demonstrates higher performance.

We first use the Kd-Tree as the hierarchical structure, akin to Mitsuba’s approach,
where the Kd-Tree is constructed in Euclidean space for acceleration of ray-triangle
intersection checking. The Kd-Tree traversal is modified from straight rays to curved
rays. As the following example in Figure 8.15, the intersection of a curved ray with a
node of the Kd-Tree formed by an axis-aligned bounding box (AABB) is demonstrated:
we first decompose the box into horizontal and vertical surfaces, as shown in Figure 8.15
(a-c). For horizontal surfaces, the surface is projected in the vertical direction, and the
intersection parameter t0 as shown in Figure 8.15 (d) is calculated. Subsequently, we
verify whether the horizontal position of the curved ray at t0 falls within the projected
rectangle of the box on the horizontal plane, as illustrated in Figure 8.15 (f). To check
the intersection of vertical surfaces, as shown in Figure 8.15 (c). The intersection at
t0 in the horizontal plane of the projected rectangle of the box in Figure 8.15 (e) is
determined. Subsequently, the intersection is obtained by examining whether, at t0,
the curved ray resides within the projected range of the box in the vertical direction, as
depicted in Figure 8.15 (g). Furthermore, we order the surfaces for intersection checking
based on the position of curved ray to prevent redundant checks.

Constructing the Kd-Tree in Euclidean space fails to capture the geometry of non-
Euclidean spaces. We propose a construction approach based on the geodesics asso-
ciated with the underlying space, as discussed in Chapter 8.3.1. However, in the case
of both AABB Kd-Tree and geodesics-based Kd-Tree, if the object is translated, the
construction of related nodes needs to be recalculated, as the closure no longer holds
(Figure 8.16). Leveraging the advantageous property of Möbius transformations pre-
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(a) (b) (c)

(d) (e)

(f) (g)
Figure 8.15: (a-c) illustrate the decomposition of an AABB into horizontal and vertical
surfaces. (b), (d), and (f) depict the procedure for checking intersections between curved
rays and horizontal surfaces. (c), (e), and (g) illustrate the procedure for checking inter-
sections between curved rays and vertical surfaces.

serving circles [34], we suggest employing cylinders for bounding volume hierarchy,
requiring only the update of the cylinder’s center position and radius. We demonstrate
the construction process in Chapter 8.3.2.

In addition, the comparison of the construction time and the speed of intersection
checking among three approaches is conducted in Chapter 8.3.4.
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Figure 8.16: These figures illustrate that the hierarchical structure does not hold with
translations for AABB. The image (top) illustrates the bounding hierarchy in spherical
space, while the image (bottom) represents the bounding hierarchy in hyperbolic space.
After translating the object from left to right, the green circles are outside the red boxes.

8.3.1 Geodesics-based Space Partition

We specifically describe the modified portion of the Kd-Tree in non-Euclidean spaces.
Chapter 8.3.1.1 shows details on the construction of the Kd-Tree. Refer to Chapter 8.3.3
for details on applying it to calculate intersections while traversing tree nodes.

8.3.1.1 Space Partition Based on Geodesics

In this chapter, we present an algorithm for partitioning triangles in non-Euclidean
spaces using geodesics. The geodesics used for partitioning in the vertical direction
are the same as those in Euclidean space. For partitioning in the plane, we use geodesics
that are perpendicular to the real axis and the imaginary axis in the complex plane (Fig-
ure 8.17). To determine the geodesic bounding the triangles, we calculate the geodesic
either through the projection of the vertices of triangles on the axis or tangent to the
edge (the intersection must be located on the edge), as illustrated in (Figure 8.17 (c-
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d)). By finding the maximum bounding of all edges for a triangle (Figure 8.17 (e-f)), a
geodesics-based partition is created.

When an object in the scene is translated, the geodesics-based space partition re-
quires recalculation of the object’s bounding, which can be time-consuming. To address
this, we propose a fast algorithm based on cylinder-based bounding volumes.

8.3.2 Cylinder-based Bounding Volume Hierarchy

The bounding volume takes advantage of the property that Möbius transformations pre-
serving circles [34]. Consequently, we only need to update the radius and center of
the cylinder-based bounding volumes related to the object. As shown in Figure 8.18.
The bounding conditions for objects hold when the object is translated both horizontally
and vertically. In addition, the geodesics of curved rays can either form a circle or a
line. Thus, we can analytically determine the intersection of the curved ray with the
bounding volume. The construction of the bounding volume is similar to the approach
presented in [58]. We split triangles based on surface area heuristic [49] and calculate
the maximum radius bounding triangles on the plane, as well as the bounding planes in
the vertical direction.

8.3.3 Curved Ray Intersects with Nodes of Trees

Both the nodes on the geodesics-based Kd-tree and the cylinder-based BVH are bounded
by circles or lines on the horizontal plane. In the former case, it will be on a line and
three circles, or two lines and two circles, or four circles. In the latter case, it will be
one circle. Therefore, to find the intersection between a curved ray and a node, we
perform calculations similar to those in Figure 8.15. The only difference is that we have
to perform circle-circle intersection checking.



77

8.3.4 Performance Comparison among Hierarchical Structures

Comparing the performance of hierarchical structures across different models as de-
picted in Table 8.2. We evenly distribute locations around the object, with each location
having rays evenly distributed along the radial direction. In total, we sample 146 loca-
tions, each with 614 rays, resulting in a total of 89,644 rays. Table 8.2 presents recorded
data, including the depth of the tree, the time of construction in milliseconds, and the
time of travel to find the intersection in microseconds per ray for each hierarchical struc-
ture. Please note that we have rounded the time to the nearest integer. All experiments
were conducted on a computer with an i7-8700K @3.70GHz CPU, and the code was
executed using a single thread. For all structures, the minimum number of primitives
required to halt partitioning is set at 6, and all partitions are based on surface area heuris-
tic [49].

In the comparison, the order of depth for structures is AABB<Geodesics<Cylinder,
and the associated time of constructions follow the same order: AABB < Geodesics <

Cylinder. More specifically, the time of construction for the geodesics-based Kd-Tree
and the cylinder-based BVH is approximately twice that of the AABB-based Kd-Tree,
due to the additional bounding computation. Regarding the time of travel, the order is
AABB < Cylinder < Geodesics because the traditional Kd-Tree, with plane bounding,
requires at most four line segment-circle intersection checks, which is more efficient
than the geodesics-based Kd-Tree with up to four circle-circle intersection checks. The
cylinder-based BVH requires one circle-circle intersection check. Additionally, one
line segment-circle intersection check is computationally less expensive than one circle-
circle intersection check.
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Objects Type Triangles Intersections AABB Geodesics Cylinder

Teapot S2 4032 7694 14/19/8 15/36/14 16/45/13
Dragon S2 34648 3892 18/185/13 20/378/26 22/432/22
Bunny S2 69666 8239 18/367/12 20/781/22 24/887/21
Lucy S2 100000 3620 19/565/14 21/1157/28 25/1355/24

Buddha S2 100000 6081 21/603/16 24/1227/31 26/1418/28
Average S2 61669 5905 18/347/12 20/715/24 22/827/21
Teapot H2 4032 6224 14/22/7 14/38/14 16/55/12
Dragon H2 34648 2959 18/188/12 20/416/26 22/441/21
Bunny H2 69666 6560 18/366/12 20/834/23 24/892/20
Lucy H2 100000 2622 19/568/13 21/1273/28 25/1390/23

Buddha H2 100000 4644 21/604/16 25/1349/33 26/1415/28
Average H2 61669 4601 18/349/12 20/782/24 22/838/20

Table 8.2: Comparing the performance of hierarchical structures over time. The table’s
first column displays various objects used for testing, while the second column indicates
the type of curved ray in the corresponding space. The third column represents the num-
ber of intersections. The remaining columns (AABB-based Kd-Tree, Geodesics-based
Kd-Tree, and Cylinder-based BVH) present performance metrics, including the depth
of the tree, construction time in milliseconds, and travel time to find the intersection in
microseconds per ray. The final row displays the average results for all objects.
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(a) (b)

(c) (d)

(e) (f)
Figure 8.17: Geodesics for space partition in spherical (a) and hyperbolic space (b), the
examples of bounding an edge (c-d), and the examples of bounding a triangle (e-f). The
dark green dots represent vertices of edges, and the green dot represents the projected
points on the axes. The dashed lines represent the geodesics for space partition.
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Figure 8.18: These figures demonstrate that the hierarchical structure still holds with
left-to-right and top-to-bottom object translations. Thus, updating the center and radius
of the bounding cylinders is the only required task, significantly easier than reconstruct-
ing the hierarchical tree. The image (top) illustrates the bounding hierarchy in spherical
space, and the image (bottom) represents the bounding hierarchy in hyperbolic space.
The red bounding volume encloses the white bounding volume, which in turn encom-
passes the green bounding volume. Within the white bounding volume resides a white
dragon, and within the green bounding volume resides a green dragon.
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Chapter 9: Conclusion and Future Work

In this chapter, we provide a summary of our contributions to this dissertation. In addi-
tion, we discuss the limitations of our work and suggest potential directions for future
research.

9.1 Contributions

In this dissertation, we have made the following contributions:

• We provide a system in which users can interactively design any two-dimensional
kaleidoscopic orbifolds. Our interactive design system is centered around deter-
mining the configuration of a room based on the orbifold notation provided by
users. The system provides not only Euclidean orbifolds but also spherical and
hyperbolic orbifolds.

• Additionally, we present an enumeration of two-dimensional kaleidoscopic orb-
ifolds, considering the combination of the cardinality of the underlying polygon
and the type of universal cover. Our design system facilitates interactive con-
struction of the orbifold’s universal cover and allows embedding and movement
of objects within the scene.

• We propose the construction of all kaleidoscopic orbifolds in the plane under
stereographic projection and provide an algorithm for constructing the underly-
ing polygon of arbitrary kaleidoscopic orbifolds.

• We propose a geodesic-based algorithm to tessellate orbifolds in the underlying
space and a contour-based algorithm for fast tessellation with contour preserva-
tion.
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• We propose using mirrors reflections as a visual metaphor for orbifolds. The user
can generate high-quality, photo-realistic renderings of the scene, panorama, and
animations with Mitsuba, which we have modified to account for geodesics in
spherical and hyperbolic geometry, along which light travels.

• We propose an algorithm to separate the rendering pass between the mirror room
and the objects inside the orbifolds, aiming to accelerate the rendering.

• Finally, we propose a geodesic-based space partition algorithm for non-Euclidean
spaces and a cylinder-based bounding volume to minimize the reconstruction of
hierarchy when translating objects in underlying space.

9.2 Future Work

The dissertation suggests several potential directions for exploration:

• Making rendering more efficient with the off-line rendering by Mitsuba is impor-
tant, and we plan to investigate more efficient spatial hierarchical data structures
for the non-Euclidean spaces. In addition, the quality of the meshes used to rep-
resent the floor and the ceiling can impact the rendering speed, and we plan to
explore more optimal meshing structures for our purpose.

• Our results show high variance noises when rendering non-Euclidean spaces, par-
ticularly in the case of spherical orbifolds. It is challenging for users to select an
optimal value for the number of photon passes and the number of photons. We
want to propose an algorithm that automatically estimates the number of photons
based on irradiance (the radiant flux received by a surface per unit area).

• The distance and size information resulting from the projection and distortion of
the non-Euclidean spaces is lost. We wish to investigate how to integrate the
perception of distances for orbifolds.

• We wish to expand our rendering system to arbitrary three-dimensional orbifolds.
In addition, not all orbifolds are kaleidoscopic, and we would like to incorporate
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the visualization for non-kaleidoscopic orbifolds, such as the ones involving glid-
ing reflections. Finally, we wish to explore the visualization of non-orientable
orbifolds, whose universal cover is a non-orientable surface such as the Projective
plane and the Klein bottle.

• Another way that humans perceive reflection, distance, location, and size is through
hearing. We want to investigate how to transfer the geometric information of orb-
ifolds into an aural signal and explore the difference in signals among different
orbifolds.

• Dynamic objects can cause ongoing changes in the appearance of objects and can
aid in understanding space and orbifolds by providing coherence and discrimi-
nation between Euclidean space and non-Euclidean spaces. We wish to extend
real-time rigid body and fluid simulation to non-Euclidean spaces and orbifolds.
To accomplish this, the difficulty of converting dynamic simulations from Eu-
clidean space to non-Euclidean spaces and reducing the computational overhead
of simulation needs to be addressed.
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Appendix A: Proofs for Kaleidoscopic Orbifold Enumeration

In Table 4.1 we provide an enumeration of 2D kaleidoscopic orbifolds based on the
cardinality of their underlying polygons and the type of their universal covers. To justify
this enumeration, we organize the computation behind this enumeration into a number
of theorems in this chapter.

Theorem A.0.1. Given a kaleidoscopic orbifold O =∗k1k2 . . .kN , O is a spherical orb-

ifold if N ≤ 2 and a hyperbolic orbifold if N > 4. When N = 4, O is a hyperbolic orbifold

with the only exception of ∗2222, which is a Euclidean orbifold.

Proof. To show these statements, we only need to compute the Euler characteristics of
these orbifolds using Equation 3.1 in the paper which states that Euler characteristic of
a kaleidoscopic orbifold O =∗k1k2 . . .kN is χ(O) = ∑

N
i=1

1
2ki

− N
2 +1.

When N = 1, the polygon is a monogon, with one mirror wall that self-intersects
at an angle of π

k . The only good kaleidoscopic orbifold is when k = 1, i.e. the wall
self-intersects at an angle of π . Note that the orbifold O =∗1 is usually abbreviated as ∗.
Thus, χ(O) = 1

2 −
1
2 +1 = 1 > 0. Consequently, this orbifold is spherical. In fact, this

orbifold is a hemisphere with the boundary having the reflectional symmetry.
When N = 2, O =∗k1k2 where 1 < k1 ≤ k2. Consequently, χ(O) = 1

2k1
+ 1

2k2
− 2

2 +

1 = 1
2k1

+ 1
2k2

> 0, which means that this type of orbifolds are also spherical.
On the other hand, when N ≥ 4, we have ki ≥ 2 for any 1 ≤ i ≤ N. Thus, χ(O) =

∑
N
i=1

1
2ki

− N
2 +1 ≤ 1

4N − N
2 +1 = 1− N

4 ≤ 0. Notice that the equality holds in the above
only when N = 4 and k1 = k2 = k3 = k4 = 2. Consequently, this type of orbifolds is
hyperbolic with the only exception of ∗2222, which is a Euclidean orbifold.

Theorem A.0.1 indicates that the more walls there are in the kaleidoscopic orbifold,
the more negative its Euler characteristic and the more likely the orbifold being hyper-
bolic. In contrast, the fewer the walls the more positive its Euler characteristic and more
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likely the orbifold being spherical. The boundary between the set of spherical orbifolds
and the set of hyperbolic orbifolds is drawn when N = 3, i.e. triangular orbifolds. The
next several theorem inspect this scenario, which consists a number of cases.

Theorem A.0.2. Given a triangular kaleidoscopic orbifold O =∗k1k2k3 and without the

loss of generality assuming that 3 ≤ k1 ≤ k2 ≤ k3, O is a hyperbolic orbifold with the

only exception of ∗333, which is a Euclidean orbifold.

Proof. First of all, the assumption that 3 ≤ k1 ≤ k2 ≤ k3 makes sense since any permu-
tation of k1, k2, and k3 gives rise the same triangular orbifold.

Again, we only need to compute the Euler characteristics of these orbifolds. Here,
χ(O) = ∑

3
i=1

1
2ki

− 3
2 + 1 ≤ 1

63− 3
2 + 1 = 0. Notice that the equality holds in the above

only when k1 = k2 = k3 = 3. Consequently, this type of orbifolds is hyperbolic with the
only exception of ∗333, which is a Euclidean orbifold.

Theorem A.0.2 states that for triangular orbifolds, the higher the minimal order of
symmetry at the corners, namely k1, the more likely the orbifold is hyperbolic. We now
consider the case when k1 = 2.

Theorem A.0.3. Given a triangular kaleidoscopic orbifold O =∗2k2k3 where 2 ≤ k2 ≤
k3, O is a spherical orbifold if k2 = 2. In contrast, when k2 ≥ 4, O is a hyperbolic

orbifold with the only exception of ∗244, which is a Euclidean orbifold.

Proof. Since N = 3, when k1 = k2 = 2 we find the Euler characteristic χ(O) = 1
4 +

1
4 +

1
2k3

− 3
2 +1 = 1

2k3
> 0. Thus, in this case the orbifold is always spherical.

On the other hand, when k3 ≥ k2 ≥ 4, the Euler characteristics is χ(O) = 1
4 +

1
2k2

+
1

2k3
− 3

2 + 1 ≤ 1
4 +

1
8 +

1
8 −

3
2 + 1 = 0. Notice that the equality holds in the above only

when k2 = k3 = 4. Consequently, this type of orbifolds is hyperbolic with the only
exception of ∗244, which is a Euclidean orbifold.

The last remaining case is when O =∗23k3, which is covered in the next theorem.
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Theorem A.0.4. Given a triangular kaleidoscopic orbifold O =∗23k3 where 3 ≤ k3, O

is a spherical orbifold if k3 < 6, a Euclidean orbifold if k3 = 6, and a hyperbolic orbifold

if k3 > 6.

Proof. The Euler characteristic of this type of orbifolds is χ(O) = 1
4 +

1
6 +

1
2k3

− 3
2 +1 =

1
2k3

− 1
12 = 6−k3

12k3
. Thus, χ(O) is positive when k3 < 6, zero when k3 = 6, and negative

when k3 > 6. Consequently, O is a spherical orbifold if k3 < 6, a Euclidean orbifold if
k3 = 6, and a hyperbolic orbifold if k3 > 6.

Interestingly, each of the above theorems contains a Euclidean orbifold: ∗2222 for
Theorem A.0.1, ∗333 for Theorem A.0.2, ∗244 for Theorem A.0.3, and ∗236 for Theo-
rem A.0.4. Not only do these facts confirm that there are only four Euclidean kaleido-
scopic orbifolds, but they also show the transition from spherical orbifolds to hyperbolic
orbifolds with more walls and higher-order symmetries at the corners.
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Appendix B: Optics-Based Visualization for Orbifold Concept and

Properties

Our system can be used to generate example scenarios to illustrate important concepts
and properties of orbifolds such as the following. Given a room with the statue Lucy,
we first mount a mirror each on two adjacent walls (Figure B.1 (a)). This leads to an
illusion of a space that is four times as large as the room without a mirror. The virtual
space is the universal cover of the orbifold (the original room).

In addition, the symmetry for the room can be understood by checking the orienta-
tions of the statues in the space. While the statue has her left hand up holding the torch
in the original room, each mirror generates a virtual statue who raises the torch by her
right hand (a reflection). Interestingly, reflecting the statue in the first virtual room with
respect to the second mirror leads to the third virtual statue, who switches back to her
left hand to raise the torch. However, this virtual statue faces the opposite direction of
the statue in the original room, i.e. a rotation by π . One can consider the reflected and
rotated virtual copies as the result of the action of the symmetry group of the underly-
ing orbifold. This group consists of the identity action, two reflections (one per each
mirror), and one rotation (the composite of the two mirrors).

By moving one of the mirrors to the wall opposite the other mirror, we obtain a
different scene where there are infinitely many copies of the original room (Figure B.1
(b)). In fact, the universal cover of this orbifold can be generated by first grouping the
original room with one of the reflections and then translating infinitely many times the
two rooms by a distance that is a multiple of twice the room depth. The union of the two
rooms (the real room and the virtual room) is thus referred to as a translational cover.

When a mirror is mounted on each wall (Figure B.1 (c)), we obtain the orbifold
whose translational cover is the same as the universal cover of the room shown in Fig-
ure B.1 (a). This translational cover is then translated in two mutually perpendicular
directions. Note that this is the first orbifold (in this example) that we have encountered
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(a) two adjacent mirrors (b) two parallel mirrors (c) four mirrors

Figure B.1: A square room with two or four mirrors. The case in the four mirror room
(c) corresponds to a Euclidean orbifold ∗2222.

(a) *333 (b) ∗244 (c) ∗236

Figure B.2: The three triangular Euclidean kaleidoscopic orbifolds.

where all walls have a mirror. This room corresponds to the ∗2222 orbifold. Each of the
corner has an angle of π

2 , thus its notation. At such a corner, there are 2k copies of the
original room forming k pairs. Inside each pair, one of the rooms is a rotational copy
of the original room while the other is a reflectional copy. A kaleidoscopic orbifold has
a transformation group that is generated by mirror reflections. The subgroup for each
corner is thus Dk, the Dihedral group of order k. In the ∗2222 case, the symmetry group
at every corner is the same, i.e. D2.

∗2222 is one of the four Euclidean kaleidoscopic orbifolds, i.e. whose universal
cover is the Euclidean plane. Figure B.2 shows the other three such orbifolds: (1) ∗333,
(2) ∗244, and (3) ∗236. The ∗333 orbifold (Figure B.2 (a)) is obtained by placing three
mirror walls in a π

3 −
π

3 −
π

3 triangular room. Its translational cover consists of six copies
of the original room (D3). Similarly, the ∗244 orbifold (Figure B.2 (b)) is obtained
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by placing three mirror walls in a π

2 − π

4 − π

4 triangular room. Its translational cover
consists of eight copies of the original room (D4). The ∗236 orbifold (Figure B.2 (c)) is
generated by placing three mirror walls in a π

2 −
π

3 −
π

6 triangular room. Its translational
cover consists of 12 copies of the original room (D6). Notice that the symmetry group
can vary from corner to corner. In addition, note that an orbifold does not depend on
which corner is referred to as the first corner. Thus, ∗236 and ∗362 represent the same
orbifold. Similarly, the orbifold does not change when the corners are numbered in the
opposite order. Thus, ∗236 and ∗632 also represent the same orbifold.
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